Skip to main content
Log in

An efficient parallel implementation of cell mapping methods for MDOF systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The long-term behavior of dynamical system is usually analyzed by means of basins of attraction (BOA) and most often, in particular, with cell mapping methods that ensure a straightforward technique of approximation. Unfortunately, the construction of BOA requires large resources, especially for higher-dimensional systems, both in terms of computational time and memory space. In this paper, the implementation of cell mapping methods toward a distributed computing is undertaken; a new efficient parallel algorithm for the computation of large-scale BOA is presented herein, also by addressing issues arising from the inner seriality related to the BOA construction. A cell mapping core is thus wrapped in a management shell, and in charge of the core administration, it permits to split over a multicore environment the computing domain, by carrying out an efficient use of the distributed memory. The proposed approach makes use of a double-step algorithm in order to generate, first, the multidimensional BOA of the system and then to evaluate arbitrary 2D Poincaré sections of the hypercube that stores the information. An analysis on a test system is performed by considering different dimensional grids; the effort of a parallel implementation toward medium and large clusters is balanced by a great results in terms of computational speed. The performances are strictly affected not only by the number of cores used to run the code, but in particular in the way they are instructed. To get the best from an implementation on a massive parallel architecture, the processes must be properly balanced between memory operations and numerical integrations. A significant improvement in the elaboration time for a large computing domain is shown, and a comparison with a serial code demonstrates the great potential of the application; the advantages given by the use of parallel reading/writing are also discussed with respect to the BOA grid dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Cluster EURORA@CINECA: 64 compute nodes (32 nodes with a 2 eight-core Intel(R) Xeon(R) CPU E5-2658 @ 2.10 GHz and 32 nodes with 2 eight-core Intel(R) Xeon(R) CPU E5-2687W @ 3.10 GHz).

References

  1. Belardinelli, P., Lenci, S.: A first parallel programming approach in basins of attraction computation. Int. J. Non-Linear Mech. 80, 76–81 (2016)

    Article  Google Scholar 

  2. Carvalho, E., Goncalves, P., Rega, G., Del Prado, Z.: Influence of axial loads on the nonplanar vibrations of cantilever beams. Shock Vib. 20, 1073–1092 (2013)

    Article  Google Scholar 

  3. Crespo, L., Sun, J.: Stochastic optimal control of nonlinear systems via short-time gaussian approximation and cell mapping. Nonlinear Dyn. 28(3–4), 323–342 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crespo, L., Sun, J.: Fixed final time optimal control via simple cell mapping. Nonlinear Dyn. 31(2), 119–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eason, R., Dick, A.: A parallelized multi-degrees-of-freedom cell mapping method. Nonlinear Dyn. 77(3), 467–479 (2014)

  6. Eason, R., Dick, A., Nagarajaiah, S.: Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system. J. Sound Vib. 333(15), 3490–3504 (2014)

    Article  Google Scholar 

  7. Forum, M.P.I.: MPI: A Message-Passing Interface Standard Version 3.0. High Performance Computing Center, Stuttgart (2012)

    Google Scholar 

  8. Ge, Z.M., Lee, S.C.: Analysis af random dynamical systems by interpolated cell mapping. J. Sound Vib. 194(4), 521–536 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, Z.M., Lee, S.C.: A modified interpolated cell mapping method. J. Sound Vib. 199(2), 189–206 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gonalves, P., Silva, F., Del Prado, Z.: Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 50(1–2), 121–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guder, R., Dellnitz, M., Kreuzer, E.: An adaptive method for the approximation of the generalized cell mapping. Chaos Solitons Fractals 8(4), 525–534 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong, L., Sun, J.: Bifurcations of a forced duffing oscillator in the presence of fuzzy noise by the generalized cell mapping method. Int. J. Bifurc. Chaos 16(10), 3043–3051 (2006)

    Article  MATH  Google Scholar 

  13. Hong, L., Sun, J.: Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method. Chaos Solitons Fractals 27(4), 895–904 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, C.: A theory of cell-to-cell mapping dynamical systems. J. Appl. Mech. 47(4), 931–939 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsu, C.: Probabilistic theory of nonlinear dynamical systems based on the cell state space concept. J. Appl. Mech. Trans. ASME 49(4), 895–902 (1982)

    Article  MATH  Google Scholar 

  16. Hsu, C.: Cell to Cell Mapping: A Method of Global Analysis for Nonlinear System. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  17. Hsu, C., Guttalu, R.: Unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings. J. Appl. Mech. Trans. ASME 47(4), 940–948 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsu, C., Guttalu, R., Zhu, W.: Method of analyzing generalized cell mappings. J. Appl. Mech. Trans. ASME 49(4), 885–894 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kreuzer, E., Lagemann, B.: Cell mapping for multi-degree-of-freedom-systems—parallel computing in nonlinear dynamics. Chaos Solitons Fractals 7(10), 1683–1691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marszal, M., Jankowski, K., Perlikowski, P., Kapitaniak, T.: Bifurcations of oscillatory and rotational solutions of double pendulum with parametric vertical excitation. Math. Probl. Eng. (2014). doi:10.1155/2014/892793

  21. Nusse, H., Yorke, J.: Dynamics: Numerical Explorations. Springer, Berlin (1998)

  22. Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal. Theory Methods Appl. 63(5–7), 902–914 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Snir, M., Otto, S., Huss-Lederman, S., Walker, D.: MPI: The Complete Reference. MIT Press, Cambridge (1996)

    Google Scholar 

  24. van der Spek, J.: Cell mapping methods: modification and extensions. Ph.D. thesis, Technical University of Eindhoven (1994)

  25. van der Spek, J., van Campen, D., de Kraker, A.: Cell mapping for multi degrees of freedom systems. In: Proceedings of the 1994 international mechanical engineering congress and exposition, vol. 192, pp. 151–159. Chicago, IL (1994)

  26. Sun, J.: Control of nonlinear dynamic systems with the cell mapping method. Advances in Intelligent Systems and Computing 175 ADVANCES, 3–18 (2013)

  27. Sun, J., Luo, A.: Global Analysis of Nonlinear Dynamics. Nonlinear Systems and Complexity. Springer, New York (2012)

  28. Thompson, J., Stewart, H.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    MATH  Google Scholar 

  29. Tongue, B.: On obtaining global nonlinear system characteristics through interpolated cell mapping. Phys. D Nonlinear Phenom. 28(3), 401–408 (1987)

    Article  MathSciNet  Google Scholar 

  30. Tongue, B.: A multiple-map strateby for interpolated mapping. Int. J. Non-Linear Mech. 25(2–3), 177–186 (1990)

    Article  MathSciNet  Google Scholar 

  31. Tongue, B., Gu, K.: A higher order method of interpolated cell mapping. J. Sound Vib. 125(1), 169–179 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tongue, B., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. Trans. ASME 55(2), 461–466 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van Campen, D., De Kraker, A., Fey, R., Van De Vorst, E., Van Der Spek, J.: Long-term dynamics of non-linear mdof engineering systems. Chaos Solitons Fractals 8(4 SPEC. ISS), 455–477 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van Campen, D., Van De Vorst, E., van Der Spek, J., De Kraker, A.: Dynamics of a multi-dof beam system with discontinuous support. Nonlinear Dyn. 8(4), 453–466 (1995)

    Article  Google Scholar 

  35. van der Spek, J., de Hoon, C., de Kraker, A., van Campen, D.: Parameter variation methods for cell mapping. Nonlinear Dyn. 7(3), 273–284 (1995)

  36. Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. Series in Nonlinear Science, Series A, Volume 28. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  37. Xiong, F., Qin, Z., Ding, Q., Hernandez, C., Fernandez, J., Schutze, O., Sun, J.Q.: Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. ASME. J. Appl. Mech 82(11), 111,010–111,010,12 (2015)

    Article  Google Scholar 

  38. Xiong, F.R., Qin, Z.C., Xue, Y., Schtze, O., Ding, Q., Sun, J.: Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1465–1473 (2014)

    Article  MathSciNet  Google Scholar 

  39. Xu, W., Sun, C., Sun, J., He, Q.: Development and study on cell mapping methods. Adv. Mech. 43(1), 91–100 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Belardinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belardinelli, P., Lenci, S. An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dyn 86, 2279–2290 (2016). https://doi.org/10.1007/s11071-016-2849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2849-3

Keywords

Navigation