Skip to main content
Log in

H \(\infty \) observer-based sliding mode control for singularly perturbed systems with input nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the problem of \(H \infty \) observer-based sliding mode control for singularly perturbed systems with input nonlinearities. First, a proper observer is designed such that the observer error system with disturbance attenuation level is asymptotically stable. Then, an observer-based sliding surface is constructed under which a criterion for the input-to-state stability (ISS) of the sliding mode dynamics with respect to the observer error is obtained via linear matrix inequality. The criterion presented is independent of the small parameter, and the upper bound for ISS can be obtained efficiently. In addition, a sliding mode control law is synthesized to guarantee the reachability of the sliding surface in the state estimation space. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and recent developments. Automatica 50, 1315–1335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  4. Xu, B., Yang, C.G., Shi, Z.K.: Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25, 635–641 (2014)

    Article  Google Scholar 

  5. Xu, B., Shi, Z.K., Yang, C.G., Sun, F.C.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 44, 2626–2634 (2014)

    Article  Google Scholar 

  6. Hsu, K.C.: Variable structure control design for uncertain dynamic systems with sector nonlinearities. Automatica 34, 505–508 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, J., Sun, L.N., Han, Z.Z., Liu, L.P.: Adaptive terminal sliding mode control for nonlinear differential inclusion systems with disturbance. Nonlinear Dyn. 72, 221–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levant, A.: Transient adjustment of high-order sliding modes. In: Proceedings of the 8th international workshop on variable structure systems, pp. 1–6. Spain (2004)

  9. Niu, Y., Daniel, W.C.: Ho: robust observer design for Itô stochastic time-delay systems via sliding mode control. Syst. Control Lett. 55, 781–793 (2006)

    Article  MATH  Google Scholar 

  10. Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 51, 853–858 (2006)

    Article  MathSciNet  Google Scholar 

  11. Bandyopadhyay, B., Deepak, F., Park, Y.J.: A robust algorithm against actuator saturation using integral sliding mode and composite nonlinear feedback. In: Proceedings of the 17th World Congress the International Federation of Automatic Control Seoul, Korea, pp. 14174–14179 (2008)

  12. Wu, L., Zheng, W.X.: Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45, 2120–2127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, L., Daniel, W.C., Ho, : Sliding mode control of singular stochastic hybrid systems. Automatica 46, 779–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, Y., Sun, B., Lu, G.: Passivity-based integral sliding-mode control of uncertain singularly perturbed systems. IEEE Trans. Circuits Syst. II Express Briefs 58, 386–390 (2011)

    Article  Google Scholar 

  15. Kokotovic, P.V., Khalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London (1986)

  16. Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 233–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shao, Z.H.: Robust stability of two-time-scale systems with nonlinear uncertainties. IEEE Trans. Autom. Control 49, 258–261 (2004)

    Article  MathSciNet  Google Scholar 

  18. Shi, P., Shue, S.P., Agarwal, R.K.: Robust disturbance attenuation with stability for a class of uncertain singularly perturbed systems. Int. J. Control 70, 873–891 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, S.J., Lin, J.L.: Maximal stability bounds of singularly perturbed systems. J. Frankl. Inst. 336, 1209–1218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z.M., Liu, W., Dai, H.H. Naidu, D.S.: Robust stabilization of model-based uncertain singularly perturbed systems with networked time-delay. In: Proceedings of the 48th IEEE conference on decision and control conference, Shanghai, P.R. China, pp. 7917–7922 (2009)

  21. Yang, C.Y., Zhang, Q.L., Sun, J., Chai, T.Y.: Lur’e Lyapunov function and absolute stability criterion for Lur’e singularly perturbed systems. IEEE Trans. Autom. Control 56, 2666–2671 (2011)

    Article  MathSciNet  Google Scholar 

  22. Tuan, H.D., Hosoe, S.: Multivariable circle criteria for multiparameter singularly perturbed systems. IEEE Trans. Autom. Control 45, 720–725 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saksena, V.R., Kokotovic, P.V.: Singular perturbation of the Popov–Kalman–Yakubovich lemma. Syst. Control Lett. 1, 65–68 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, H.P., Sun, F.C., Sun, Z.Q.: Stability analysis and synthesis of fuzzy singularly perturbed systems. IEEE Trans. Fuzzy Syst. 13, 273–284 (2005)

  25. Moraal, P.E., Grizzle, J.W.: Observer design for nonlinear systems with discrete-time measurements. IEEE Trans. Autom. Control 40, 396–404 (1995)

  26. Lu, R.Q., Xu, Y., Xue, A.K.: \(H \infty \) filtering for singular systems with communication delays. Signal Process. 90, 1240–1248 (2010)

    Article  MATH  Google Scholar 

  27. Ibrir, S., Xie, W.F., Su, C.Y.: Observer-based control of discrete-time Lipschitzian nonlinear systems: application to one-link flexible joint robot. Int. J. Control 78, 385–395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 44, 1672–1687 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, Z.P., Hill, D.J., Guo, Y.: Semiglobal output feedback stabilization for the nonlinear benchmark example. In: Proceedings of the European Control Conference, Brussels, Belgium (1997)

  30. Liberzon, D.: Observer-based quantized output feedback control of nonlinear systems. In: Proceedings of the 17th IFAC World Congress, pp. 8039–8043 (2008)

  31. Wang, Z.M., Liu, W.: Output feedback networked control of singular perturbation. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, Taipei, Taiwan, pp. 645–650 (2011)

  32. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, NJ (2000)

    MATH  Google Scholar 

  33. Boyd, S., Ghaoui, L.E.L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (11171113, 11471118), the Research Foundation of the Henan Higher Education Institutions of China (16A110006) and the Science and Technology Planning Project of Henan Province of China (162102310619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Y. & Wang, Z. H \(\infty \) observer-based sliding mode control for singularly perturbed systems with input nonlinearity. Nonlinear Dyn 85, 573–582 (2016). https://doi.org/10.1007/s11071-016-2707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2707-3

Keywords

Navigation