Skip to main content
Log in

Noether theorem for non-conservative systems with time delay in phase space based on fractional model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we focus on discussing the fractional Noether symmetries and fractional conserved quantities for non-conservative Hamilton system with time delay. Firstly, the fractional Hamilton canonical equations of non-conservative system with time delay are established; secondly, based upon the invariance of the fractional Hamilton action with time delay under the infinitesimal transformations of group, we obtain the definitions and criterion of fractional Noether symmetric transformations, fractional Noether quasi-symmetric transformations and fractional generalized Noether quasi-symmetric transformations in phase space; finally, the relationship between the fractional Noether symmetries and fractional conserved quantities with time delay in phase space is established. At the end of the paper, some examples are given to illustrate the application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spaniner, J.: The Fractional Calculus. Academic Press, New York (1974)

    Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Samko, S.G., Marichev, A.A.O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Linghorne, PA (2006)

    MATH  Google Scholar 

  4. Kilbas, A.A., Srivatava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  5. Podlublly, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  6. Malinowska, A.B., Torres, D.M.: Introduction to the Fractional Calculus of Variations. Imperial Collegs Press, London (2012)

    Book  MATH  Google Scholar 

  7. Herrmann, R.: Fractional Calculus: An Introduction for Physists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  8. Riewe, F.: Nonconservation Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  9. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  10. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A Math. Gen. 39(33), 10374–10384 (2006)

    Article  MathSciNet  Google Scholar 

  13. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 11(52), 1247–1253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czech. J. Phys. 56(10–11), 1087–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muslih, S.I., El-Zalan, H.A.: Hamiltonian formulation of systems with higher order derivatives. Int. J. Theor. Phys. 46(12), 3150–3158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rabei, E.M., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327(2), 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herallah, M.A.E., Baleanu, D.: Fractional order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Trujillo, J.I.: A new method of finding the fractional Euler–Lagrange and Hamilton equations with Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frederico, G.S.F., Torres, D.F.M.: Noether’s theorem for fractional optimal control problems. In: Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Portagal, Porto, pp. 142–147 (2006)

  20. Frederico, G.S.F., Torres, D.F.M.: Nonconservative Noethers theorem in optimal control. Int. J. Tomogr. Stat. 5(W07), 109–114 (2007)

    MathSciNet  Google Scholar 

  21. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noethers theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Atanacković, T.M., Konjik, S., Simić, S.: Variational problems with fractional derivatives: invariance conditions and Noethers theorem. Nonlear Anal. 71(5–6), 1504–1517 (2009)

  24. Zhang, Y., Zhou, Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. 73(1–2), 783–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, Y., Zhang, Y.: Fractional Pfaff–Birkhoff principle and fractional Birkhoff’s equations in terms of Riemann–Liouville derivatives. Bull. Sci. Technol. 29(3), 4–10 (2013)

    Google Scholar 

  26. Zhou, Y., Zhang, Y.: Fractional Pfaff–Birkhoff principle and Birkhoff’s equations in terms of Riesz fractional derivatives. Trans. Nanjing Univ. Aero. Astro. 31(1), 63–69 (2014)

  27. Zhou, Y., Zhang, Y.: Noether’s theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives. Chin. Phys. B 23(12), 124502 (2014)

    Article  Google Scholar 

  28. Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2005-5

  29. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226(3), 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, S., Fu, J.L., Liu, Y.S.: Lagrange equations of nonholonomic systems with fractional derivatives. Chin. Phys. B 19(12), 120301 (2010)

    Article  Google Scholar 

  31. Zhou, S., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. China Phys. Mech. Astron. 54(10), 1847–1853 (2011)

    Article  Google Scholar 

  32. Abdeljawad, T., Baleanu, D., Jarad, F.: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. J. Math. Phys. 49(8), 083507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Balenau, D., Maaraba, T., Jarad, F.: Fractional variational principles with delay. J. Phys. A Math. Theor. 41(31), 315403 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational principles with delay within Caputo derivatives. Rep. Math. Phys. 65(1), 17–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jarad, F., Abdeljawad, T., Baleanu, D.: Fractional variational optimal control problems with delayed argument. Nonlinear Dyn. 62(3), 609–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jarad, F., Abdeljawad, T., Baleanu, D.: Higher order fractional variational optimal control problems with time delay. Appl. Math. Comput. 218(2), 9234–9240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Frederico, G.S.F., Torres, D.F.M.: Noethers symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2(3), 619–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Jin, S.X.: Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 62(23), 214502 (2013). (in Chinese)

    MathSciNet  Google Scholar 

  39. Jin, S.X., Zhang, Y.: Noether symmetry and conserved quantity with time delay in a Hamilton system. Chin. Phys. B 23(5), 054501 (2014)

    Article  MathSciNet  Google Scholar 

  40. Jin, S.X., Zhang, Y.: Noether theorem for nonconservative mechanical system with time delay in phase space. Acta Sci. Nat. Univ. Sunyatsen 53(4), 19–23 (2014)

    MathSciNet  Google Scholar 

  41. Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 77(1–2), 73–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jin, S.X., Zhang, Y.: Noether symmetries for non-conservative Lagrange systems with time delay based on fractional model. Nonlinear Dyn. 79(2), 1169–1183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese)

    Google Scholar 

  44. Mei, F.X., Wu, H.B.: Dynamics of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2009)

    Google Scholar 

  45. Ivo, Petras: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant Nos. 10972151 and 11272227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, SX., Zhang, Y. Noether theorem for non-conservative systems with time delay in phase space based on fractional model. Nonlinear Dyn 82, 663–676 (2015). https://doi.org/10.1007/s11071-015-2185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2185-z

Keywords

Navigation