Skip to main content
Log in

Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An external feedback control is inserted in a nonlinear continuum formulation of a noncontact AFM model. The aim of the feedback is to keep the system response to an operationally suitable one, thus allowing reliable measurement of the sample surface by avoiding possible unstable microcantilever sensor motions. The study of the weakly nonlinear system dynamics about the desired fixed point close to primary resonance is carried out via multiple-scale asymptotics, whose outcomes are validated via numerical simulations of the original system equations of motion. The latter include controllable periodic dynamics and additional periodic and distinct quasiperiodic solutions that appear beyond the asymptotic stability thresholds. The results highlight the effectiveness of the applied feedback control technique and also enable the derivation of a comprehensive system bifurcation structure highlighting the stability thresholds for robust controllable AFM dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, S.I., Howell, S.A.R.: Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy 97, 185–198 (2003)

    Article  Google Scholar 

  2. Couturier, G., Boisgard, R.J.-P.: Noncontact atomic force microscopy: stability criterion and dynamical responses of the shift of frequency and damping signal. Rev. Sci. Instrum. 74(5), 2726–2734 (2003)

    Article  Google Scholar 

  3. Yagasaki, K.: Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force microscopy. Phys. Rev. B 70, 245419 (2004)

    Article  Google Scholar 

  4. Misra, S., Dankowicz, H.M.R.: Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Phys. D 239, 33–43 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bahrami, A., Nayfeh, A.H.: On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dyn. 70, 1605–1617 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hornstein, S., Gottlieb, O.: Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy. Nonlinear Dyn. 54, 93–122 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rega, G., Settimi, V.: Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dyn. 73, 101–123 (2013)

    Article  MathSciNet  Google Scholar 

  8. Burnham, N.A., Chen, X., Hodges, C.S., Matei, G.A., Thoreson, E.J., Roberts, C.J., Davies, M.C., Tendler, S.J.B.: Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003)

    Article  Google Scholar 

  9. Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., Reichling, M.: Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein J. Nanotechnol. 4, 32–44 (2013)

    Article  Google Scholar 

  10. Slattery, A.D., Blanch, A.J., Quinton, J.S., Gibson, C.T.: Accurate measurement of atomic force microscope cantilever deflection excluding tip-surface contact with application to force calibration. Ultramicroscopy 131, 46–55 (2013)

    Article  Google Scholar 

  11. Heima, L.-O., Rodrigues, T.S., Bonaccurso, E.: Direct thermal noise calibration of colloidal probe cantilevers. Colloids Surf. A Physicochem. Eng. Asp. 443, 377–383 (2014)

    Article  Google Scholar 

  12. Humphris, A.D.L., Tamayo, J., Miles, M.J.: Active quality factor control in liquids for force spectroscopy. Langmuir 16, 7891–7894 (2000)

    Article  Google Scholar 

  13. Zou, Q., Leang, K.K., Sadoun, E., Reed, M.J., Devasia, S.: Control issues in high-speed afm for biological applications: collagen imaging sample. Asian J. Control. 6(2), 164–178 (2004)

    Article  Google Scholar 

  14. Yamasue, K., Hikihara, T.: Control of microcantilevers in dynamic force microscopy using time delayed feedback. Rev. Sci. Instrum. 77, 053703 (2006)

    Article  Google Scholar 

  15. Arjmand, M.T., Sadeghian, H., Salarieh, H., Alasty, A.: Chaos control in afm systems using nonlinear delayed feedback via sliding mode control. Nonlinear Anal. Hybrid Syst. 2, 993–1001 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Merry, R., Uyanik, M., van de Molengraft, R., Koops, R., van Veghel, M., Steinbuch, M.: Identification, control and hysteresis compensation of a 3 dof metrological afm. Asian J. Control. 11(2), 130–143 (2009)

    Article  Google Scholar 

  17. Payton, O., Champneys, A.R., Homer, M.E., Picco, L., Miles, M.J.: Feedback-induced instability in tapping mode atomic force microscopy: theory and experiment. Proc. R. Soc. A 467(2130), 1801–1822 (2011). doi:10.1098/rspa.2010.0451

    Article  MATH  MathSciNet  Google Scholar 

  18. Salarieh, H., Alasty, A.: Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization. Commun. Nonlinear Sci. Numer. Simul. 14, 637–644 (2009)

    Article  Google Scholar 

  19. Wang, C.C., Pai, N.S., Yau, H.T.: Chaos control in afm system using sliding mode control by backstepping design. Commun. Nonlinear Sci. Numer. Simul. 15, 741–751 (2010)

    Article  Google Scholar 

  20. Yamasue, K., Kobayashi, K., Yamada, H., Matsushige, K., Hikihara, T.: Controlling chaos in dynamic-mode atomic force microscope. Phys. Lett. A 373(35), 3140–3144 (2009). doi:10.1016/j.physleta.2009.07.009

    Article  Google Scholar 

  21. Yagasaki, K.: New control methodology of microcantilevers in atomic force microscopy. Phys. Lett. A 375, 23–28 (2010)

    Article  MATH  Google Scholar 

  22. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  23. Yagasaki, K.: Nonlinear dynamics and bifurcations in external feedback control of microcantilevers in atomic force microscopy. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2926–2943 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Crespo da Silva, M.R.M., Glynn, C.C.: Nonlinear flexural-flexural-torsional dynamics of inextensional beams. i. Equations of motion. Mech. Based Des. Struct. Mach. 6(4), 437–448 (1978)

    Article  Google Scholar 

  25. Israelachvili, J.: Intermolecolar and Surface Forces. Academic Press, London (1992)

    Google Scholar 

  26. Sarid, D., Ruskell, T.G., Workman, R.K., Chen, D.: Driven nonlinear atomic force microscopy cantilevers: from noncontact to tapping modes of operation. J. Vac. Sci. Technol. B 14(2), 864–867 (1996)

    Article  Google Scholar 

  27. Butt, H.J., Graf, K., Kappl, M.: Physics and Chemistry of Interfaces.Wiley-VCH, Weinheim (2003)

  28. Hu, S., Howell, S., Raman, A., Reifenberger, R., Franchek, M.: Frequency domain identification of tip-sample van der Waals interactions in resonant atomic force microcantilevers. J. Vib. Acoust. 126, 343–351 (2004)

    Article  Google Scholar 

  29. Rodriguez, R.D., Lacaze, E., Jupille, J.: Probing the probe: AFM tip-profiling via nanotemplates to determine Hamaker constants from phase-distance curves. Ultramicroscopy 121, 25–30 (2012)

    Article  Google Scholar 

  30. Kuhn, S., Rahe, P.: Discriminating short-range from van der Waals forces using total force data in noncontact atomic force microscopy. Phys. Rev. B 89, 235417 (2014)

    Article  Google Scholar 

  31. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  32. Rodriguez, T.R., García, R.: Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84(3), 449 (2004)

    Article  Google Scholar 

  33. Sahin, O., Quate, C.F., Solgaard, O., Atalar, A.: Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B 69, 165416 (2004)

  34. Hornstein, S., Gottlieb, O.: Nonlinear multimode dynamics and internal resonances of the scan process in noncontacting atomic force microscopy. J. Appl. Phys. 112, 074314 (2012)

  35. Maali, A., Hurth, C., Boisgard, R., Jai, C., Cohen-Bouhacina, T., Aimé, J.P.: Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids. J. Appl. Phys. 97, 074907 (2005)

    Article  Google Scholar 

  36. Hölscher, H., Milde, P., Zerweck, U., Eng, L.M., Hoffmann, R.: The effective quality factor at low temperatures in dynamic force microscopes with Fabry-Pérot interferometer detection. Appl. Phys. Lett. 94, 223514 (2009)

    Article  Google Scholar 

  37. Settimi, V.: Bifurcation scenarios, dynamical integrity and control of noncontact atomic force microscopes. PhD thesis, Sapienza, University of Rome, 2013. http://hdl.handle.net/10805/2146

  38. Nayfeh, A.H.: Perturbation methods in nonlinear dynamics. In: Jowett, J.M., Month, M., Turner, S. (eds.) Nonlinear Dynamics Aspects of Particle Accelerators, Springer-Verlag, New York (1985)

  39. Luongo, A., Zulli, D.: A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation. Nonlinear Dyn. 70, 111–124 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Oded Gottlieb acknowledges the partial support of the Israel Science (1475/09) and Giuseppe Rega acknowledges the partial support of the Sapienza University of Rome (C26A12R2L2). Valeria Settimi is grateful to the Sapienza University of Rome for the financial support via a post doc scholarship and to the Russell Berrie Nanotechnology Institute for support of her stay at the Technion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Settimi.

Appendices

Appendix 1

The integral expressions in (15) are

$$\begin{aligned}&I_1=\left( I_{11}-\mu I_{12}\right) , \quad I_4=\left( I_{41}-\mu I_{42}\right) , \nonumber \\&I_{11} = \int _0^1\varPhi _1^2\,\mathrm {d}s=1,\nonumber \\&I_{41} = \int _0^1\varPhi _1\left( {\varPhi _1}_s\int _1^s\int _0^s{\varPhi _1}_s^2\,\mathrm {d}s\,\mathrm {d}s\right) _s\,\mathrm {d}s,\nonumber \\&\quad \int _0^1\varPhi _1 {\varPhi _1}_{ssss}\,\mathrm {d}s=\omega _1^2 \int _0^1\varPhi _1^2\,\mathrm {d}s=\omega _1^2 I_{11},\nonumber \\&I_{42} = \int _0^1\varPhi _1\left( {\varPhi _1}_s^3\right) _s\,\mathrm {d}s,\nonumber \\&I_{12} = \int _0^1\varPhi _1 {\varPhi _1}_{ss}\,\mathrm {d}s,\nonumber \\&I_5 = \int _0^1\varPhi _1\left( {\varPhi _1}_s\left( s-1\right) \right) _s\,\mathrm {d}s=\int _0^1{\varPhi _1}_s^2\left( 1-s\right) \,\mathrm {d}s,\nonumber \\&I_2 = \int _0^1\varPhi _1\,\mathrm {d}s,\nonumber \\&I_6 = \int _0^1\varPhi _1\left( {\varPhi _1}_s^3\left( s-1\right) \right) _s \,\mathrm {d}s=\int _0^1{\varPhi _1}_s^4\left( 1-s\right) \,\mathrm {d}s,\nonumber \\&I_3 = \int _0^1\varPhi _1\left( {\varPhi _1}_s\left( {\varPhi _1}_s{\varPhi _1}_{ss}\right) _s\right) _s\,\mathrm {d}s\nonumber \\&\quad \,\, =2\int _0^1\left( {\varPhi _1}_s{\varPhi _1}_{ss}\right) ^2\,\mathrm {d}s,\nonumber \\&I_7 = \int _0^1\varPhi _1\left( {\varPhi _1}_s\int _1^s\left( \int _0^s{\varPhi _1}_s^2\,\mathrm {d}s\right) _{ss}\,\mathrm {d}s\right) _s\,\mathrm {d}s. \end{aligned}$$
(45)

Appendix 2

1.1 MSM: second-order solution

Substitution of \(p_1\) (36) in the second equation of (33), and elimination of secular terms yield

$$\begin{aligned} D_1B=0 \end{aligned}$$
(46)

so that

$$\begin{aligned} B=B(T_2,T_3),\quad p_2=0 \end{aligned}$$
(47)

Using (36) and (47), and remembering that \(\tilde{x}_{ \textit{ref1} }= A_{un}(T_1,T_2,T_3)e^{i\omega _1T_0}+c.c.\) is the solution of amplitude \(A_{un}(T_1,T_2,T_3)\) of the first-order uncontrolled system, the first equation of (33), without \(\tilde{x}_{ \textit{ref2} }\) and \(N_{22}(\tilde{x}_{ \textit{ref1} })\) terms, becomes

$$\begin{aligned}&D_0^2y_2+\omega _1^2y_2\nonumber \\&\quad =-2C_{214}\left( A\bar{A}+A\bar{A}_{un}\right) -C_{212}B^2\nonumber \\&\qquad {}-e^{i\omega _1T_0}\left( C_{213}\left( A+A_{un}\right) B+2i\omega _1D_1A\right) \nonumber \\&\qquad {}-C_{211} e^{2i\omega _1T_0}\left( A^2+2AA_{un}\right) +c.c. \end{aligned}$$
(48)

and the solvability condition implies that

$$\begin{aligned} D_1A=\frac{iC_{213}}{2\omega _1}\left( A+A_{un}\right) B \end{aligned}$$
(49)

For the uncontrolled system, it is \(D_1A_{un}=0\) and thus \(A_{un}=A_{un}(T_2,T_3)\). The particular solution at this order is

$$\begin{aligned} y_2&= \frac{C_{211}}{3\omega _1^2}\left( A^2+2AA_{un}\right) e^{2i\omega _1T_0}\nonumber \\&\quad -\frac{2C_{214}}{\omega _1^2}\left( A\bar{A}+A\bar{A}_{un}\right) -\frac{C_{212}}{\omega _1^2}B^2+c.c. \end{aligned}$$
(50)

while the solution of the uncontrolled system is \(\tilde{x}_{ \textit{ref2} }=\frac{C_{211}}{3\omega _1^2}A_{un}^2 e^{2i\omega _1T_0}-\frac{2C_{214}}{\omega _1^2} A_{un}\bar{A}_{un}+c.c.\) For the expression of the \(C_{ijk}\) coefficients, see “Appendix 3” of [37].

1.2 MSM: third-order solution

At the third order, by means of the obtained results, the second of (34) becomes

$$\begin{aligned} D_0p_3=-D_2B+\hat{k}_gC_{11}B/\omega _1^2-\hat{k}_gAe^{i\omega _1T_0}+c.c. \end{aligned}$$
(51)

and the secular terms elimination, providing

$$\begin{aligned} D_2B=\hat{k}_gC_{11}B/\omega _1^2, \end{aligned}$$
(52)

permits to obtain

$$\begin{aligned} p_3=\frac{i \hat{k}_gAe^{i\omega _1T_0}}{\omega _1}+c.c. \end{aligned}$$
(53)

Here, \(\tilde{x}_{ \textit{ref3} }\) and \(N_{32}(\tilde{x}_{ \textit{ref1} },\tilde{x}_{ \textit{ref2} })\) terms, together with terms related to the horizontal and vertical excitations, are present also in the uncontrolled system, so that they can be neglected; using (36), (46), (47), (49), (50), (52), (53), and being \(D_1A_{un} = 0\) (“Appendix 2” of [37]), the first equation of (34) hence becomes

$$\begin{aligned}&D_0^2y_3+\omega _1^2y_3\nonumber \\&\quad =\gamma _{31} e^{i\omega _1T_0}+\gamma _{32} e^{2i\omega _1T_0}+\gamma _{33} e^{3i\omega _1T_0}+\gamma _{35} B^3\nonumber \\&\qquad {}+\gamma _{36}\left( A\bar{A}+\bar{A}A_{un}+A\bar{A}_{un}+A_{un}\bar{A}_{un}\right) B\nonumber \\&\qquad {}+\gamma _{37} \left( \bar{A}+\bar{A}_{un}\right) D_1A+c.c. \end{aligned}$$
(54)

with \(\gamma _{ij}\) defined in “Appendix 3” of [37]. Note that \(\gamma _{31}\) depends on \(D_2A\), so that the solvability condition of (54) provides

$$\begin{aligned}&D_2A=-\frac{C_{35} \omega _1^2+C_{11} \hat{k}_g}{2 \omega _1^2}A\nonumber \\&{\quad }{}+\,i\frac{C_{301}\left( A^2\bar{A}+2A\bar{A}A_{un} +\bar{A}A_{un}^2+A^2\bar{A}_{un} +2AA_{un}\bar{A}_{un}\right) }{2\omega _1}\nonumber \\&{\quad }{}+\,i\frac{C_{302}\left( AB^2+A_{un}B^2\right) }{2\omega _1} \end{aligned}$$
(55)

The particular solution at the third order for the controlled system results

$$\begin{aligned} y_3&= C_{306}B^3+C_{303}\left( A^3+3A^2A_{un} +3AA_{un}^2\right) e^{3i \omega _1 T_0}\nonumber \\&\quad {}+C_{304}\left( A^2B+2AA_{un}B+A_{un}^2 B\right) e^{2i \omega _1 T_0}\nonumber \\&\quad {}+C_{305}\left( A\bar{A}B+A_{un}\bar{A}B +AB\bar{A}_{un}+A_{un}B\bar{A}_{un}\right) \nonumber \\&\quad {}+c.c. \end{aligned}$$
(56)

For what concerns the uncontrolled system, the solvability condition at the third order yields

$$\begin{aligned} D_2A_{un}&= -\frac{C_{35}}{2}A_{un}+i\frac{C_{301}}{2\omega _1}\left( A_{un}^2\bar{A}_{un}\right) \\&\quad {}+\frac{C_{sv}}{4\omega _1}e^{i \sigma _v T_2}+\frac{C_{su}}{4\omega _1}e^{i\left( \sigma _u T_2+\phi _u\right) }\nonumber \\&\quad {}+i\frac{C_{cu}}{4\omega _1}e^{i\left( \sigma _u T_2+\phi _u\right) } \end{aligned}$$

whose expression is later on needed, and the particular solution results \(\tilde{x}_{ \textit{ref3} }=C_{303} A_{un}^3 e^{3i \omega _1 T_0}+c.c.\)

1.3 MSM: fourth-order solution

By means of the previous results, the second equation of (35) at the fourth order becomes

$$\begin{aligned}&D_0 p_4\nonumber \\&\quad =-D_3 B-i \frac{\hat{k}_g}{\omega _1} D_1A e^{i \omega _1 T_0}\nonumber \\&\qquad {}+\frac{2C_{214}\hat{k}_g}{\omega _1^2}\left( A\bar{A}+A_{un}\bar{A}+A\bar{A}_{un}\right) +\frac{C_{212}\hat{k}_g}{\omega _1^2}B^2\nonumber \\&\qquad {}-\frac{C_{211}\hat{k}_g}{2\omega _1^2}\left( A^2+2AA_{un}\right) e^{2i \omega _1 T_0}+c.c. \end{aligned}$$
(57)

with the vanishing of secular term providing

$$\begin{aligned} D_3 B&= +\frac{2C_{214}\hat{k}_g}{\omega _1^2}\left( A\bar{A} +A_{un}\bar{A}+A\bar{A}_{un}\right) \nonumber \\&\quad {}+\frac{C_{212}\hat{k}_g}{\omega _1^2}B^2 \end{aligned}$$
(58)

and the particular solution resulting

$$\begin{aligned} p_4&= -\frac{iC_{213}\hat{k}_g}{2\omega _1^3}\left( AB+A_{un}B\right) e^{i \omega _1 T_0}\nonumber \\&\quad {}+\frac{iC_{211}\hat{k}_g}{3\omega _1^3}\left( A^3+2AA_{un}\right) e^{2i \omega _1 T_0}+c.c. \end{aligned}$$
(59)

The first equation of (35) can thus be rewritten as

$$\begin{aligned}&D_0^2y_4+\omega _1^2y_4\nonumber \\&\quad =-A^2 \left( \gamma _{47}\bar{A}^2 +2\gamma _{47}\bar{A} \bar{A}_{un} +\gamma _{47}\bar{A}_{un}^2 \right) \nonumber \\&\qquad {} -4\gamma _{47}A A_{un} \bar{A} \bar{A}_{un} -A\left( B^2 \left( \gamma _{45}\bar{A} +\gamma _{45}\bar{A}_{un} \right) \right. \nonumber \\&\qquad {} \left. +\,\gamma _{49}\bar{A}_{un}+\gamma _{54} e^{-i \sigma _v T_2}+\gamma _{55} e^{-i \sigma _u T_2-i \phi _u}\right) \nonumber \\&\qquad {} - 2\gamma _{47}A_{un}^2 \bar{A} \bar{A}_{un}-\gamma _{45}A_{un} B^2\bar{A}_{un} \nonumber \\&\qquad {} -B \left( \gamma _{48}\bar{A} D_1A+ \gamma _{48}\bar{A}_{un} D_1A \right) \nonumber \\&\qquad {} -\gamma _{57}\bar{A} D_1^2A -\gamma _{56}\bar{A} D_2A \nonumber \\&\qquad {} -\gamma _{56}\bar{A} D_2A_{un}-\gamma _{57}\bar{A}_{un} D_1^2A\nonumber \\&\qquad {} -\gamma _{56}\bar{A}_{un} D_2A -\gamma _{50}D_1A D_1\bar{A} \nonumber \\&\qquad {} -\gamma _{46}B^4 -\gamma _{41} e^{i \omega _1 T_0}-\gamma _{42} e^{2 i \omega _1T_0}\nonumber \\&\qquad {} -\gamma _{43} e^{3 i \omega _1 T_0}-\gamma _{44} e^{4 i \omega _1 T_0}+c.c. \end{aligned}$$
(60)

The secular terms elimination requires that \(\gamma _{41}\), which depends on \(D_3A\), identically vanishes. Using Eqs. (46),(49),(52),(55), and assuming that \(2 D_1D_2A=\frac{ d D_1A}{ d T_2}+\frac{ d D_2A}{ d T_1}\) [39], it results

$$\begin{aligned} D_3A&= B^3 \left( \gamma _{402}A +\gamma _{402}A_{un} \right) \nonumber \\&\quad {} +\,B \left( \gamma _{401}A^2 \bar{A} + \gamma _{401}A^2 \bar{A}_{un}\right. \nonumber \\&\quad {} \left. +\,2\gamma _{401}A \bar{A} A_{un}+2 \gamma _{401}A A_{un} \bar{A}_{un}\right. \nonumber \\&\quad {} \left. +\,\gamma _{404}A +\gamma _{403}A_{un} \right. \nonumber \\&\quad {} \left. +\,\gamma _{401}\bar{A} A_{un}^2 +\gamma _{401}A_{un}^2 \bar{A}_{un}\right. \nonumber \\&\quad {} \left. +\,\gamma _{405} e^{i \sigma _u T_2+i \phi _u}+\gamma _{406} e^{i\sigma _v T_2}\right) \end{aligned}$$
(61)

Appendix 3

Terms \(c_{hk}\), \(h,k=1,...,5\) of the Jacobian matrix (42) are

$$\begin{aligned} c_{11}&= \frac{1}{2} (b (2 \beta _5-\beta _1 (j+j_{un}) (n+n_{un}))\nonumber \\&\quad {}-\beta _4 (j (n+n_{un})+j_{un} n))\nonumber \\ c_{12}&= \frac{1}{4} (-4 \beta _2b^3 -4 \beta _3b^2 -b (\beta _1 ((j+j_{un})^2\nonumber \\&\quad {}+3 (n+n_{un})^2)+4 \beta _7)\nonumber \\&\quad {}-\beta _4 (j^2+2 j j_{un}+3 n (n+2 n_{un})))\nonumber \\ c_{13}&= \frac{1}{2} (b (2 \beta _6-\beta _1 (j+j_{un}) (n+n_{un}))\nonumber \\&\quad {}-\beta _4 (j+j_{un}) (n+n_{un})+2 \beta _9)\nonumber \\ c_{14}&= \frac{1}{4} (-4 \beta _2b^3 -4 \beta _3b^2\nonumber \\&\quad {}-b (\beta _1 ((j+j_{un})^2+3 (n+n_{un})^2)+4 \beta _7)\nonumber \\&\quad {}-\beta _4 ( (j+j_{un})^2+3 (n+n_{un})^2) +4 \omega _1 (\varOmega _u-1))\nonumber \\ c_{15}&= \frac{1}{4} (-(n+n_{un}) ( 12 \beta _2b^2 \nonumber \\&\quad {}+8 \beta _3b +\beta _1 ((j+j_{un})^2+(n+n_{un})^2)\nonumber \\&\quad {}+4 \beta _7)+4 \beta _5 j_{un}+4 \beta _6 j+8 \beta _8) \end{aligned}$$
(62)
$$\begin{aligned} c_{21}&= \frac{1}{4} (4 \beta _2 b^3+4\beta _3 b^2 \\&\quad {}+b (\beta _1 (3 (j+j_{un})^2+(n+n_{un})^2)+4 \beta _7)\\&\quad {}+\beta _4 (3 j (j+2 j_{un})+n (n+2 n_{un})))\\ c_{22}&= \frac{1}{2} (b (\beta _1 (j+j_{un}) (n+n_{un})+2 \beta _5)\\&\quad {}+\beta _4 n (j+j_{un})+\beta _4 j n_{un})\\ c_{23}&= \frac{1}{4} ( 4 \beta _2b^3 +4 \beta _3b^2 \\&\quad {}+b ( \beta _1 ( 3 (j+j_{un})^2+(n+n_{un})^2)+4 \beta _7)\\&\quad {}+\beta _4 ( 3 (j+j_{un})^2+(n+n_{un})^2) -4 \omega _1 (\varOmega _u-1))\\ c_{24}&= \frac{1}{2} (b (\beta _1 (j+j_{un}) (n+n_{un})+2 \beta _6)\\&\quad {}+\beta _4 (j+j_{un}) (n+n_{un})+2 \beta _9)\\ c_{25}&= \frac{1}{4} ((j+j_{un}) ( 12\beta _2 b^2 +8 \beta _3b \\&\quad {}+\beta _1 ((j+j_{un})^2+(n+n_{un})^2)\\&\quad {}+4 \beta _7)+8 \beta _{10}+4 (\beta _5 n_{un}+\beta _6 n))\\ \end{aligned}$$
$$\begin{aligned} c_{31}&= \frac{C_{214} k_g j}{\omega _1^2}\\ c_{32}&= \frac{C_{214} k_g n}{\omega _1^2}\\ c_{33}&= \frac{1}{\omega _1^2}C_{214} k_g (j+j_{un})\\ c_{34}&= \frac{1}{\omega _1^2}C_{214} k_g (n+n_{un})\\ c_{35}&= \frac{1}{\omega _1^2}k_g (2 C_{212} b +C_{11})\\ c_{41}&= -\frac{1}{4}\left( \frac{C_{301} j_{un} n_{un}}{\omega _1}-2 C_{35}\right) \\ c_{42}&= \omega _1 (\varOmega _u-1)-\frac{C_{301} (j_{un}^2+3 n_{un}^2)}{8 \omega _1}\\ c_{51}&= \frac{C_{301} (3 j_{un}^2+n_{un}^2)}{8 \omega _1}-\omega _1 (\varOmega _u-1)\\ c_{52}&= \frac{1}{4} \left( \frac{C_{301} j_{un} n_{un}}{\omega _1}-2 C_{35}\right) \end{aligned}$$

Appendix 4

Coefficients \(f_{hkl}\) of the steady-state responses (41) are

$$\begin{aligned}&f_{y0}=-\frac{C_{214} (j^2+2 j j_{un}+n^2+2 n n_{un})}{2 \omega _1^2}\\&{\quad }{}+C_{306}b^3 -\frac{C_{212}}{\omega _1^2}b^2\\&\quad +\Bigl ( \frac{1}{4} C_{305} ((j+j_{un})^2 +(n+n_{un})^2)-\frac{C_{11}}{\omega _1^2}\Bigr ) b \\&f_{yc1} = j\\&f_{ys1} = -n\\&f_{yc2} = +\,\Bigl (\frac{C_{211} (j^2+2 j j_{un}-n (n+2 n_{un}))}{6 \omega _1^2}\\&\qquad \qquad {} +\frac{1}{2} C_{304} (j+j_{un}-n-n_{un}) (j+j_{un}+n+n_{un})b \Bigr )\\&f_{ys2} = -\Bigl (C_{304} (j+j_{un}) (n+n_{un})b\\&\qquad \qquad {} +\frac{C_{211} (j (n+n_{un})+j_{un} n)}{3 \omega _1^2}\Bigr )\\&f_{yc3} = +\frac{1}{4} C_{303} \Bigl (j^3+3 j^2 j_{un}+3 j (j_{un}^2-(n+n_{un})^2)\\&\qquad \qquad {} -3 j_{un} n (n+2 n_{un})\Bigr )\\&f_{ys3} = +\frac{1}{4} C_{303} \Bigl (-3 j^2 (n+n_{un})-6 j j_{un} (n+n_{un})\\&\qquad \qquad {} +n (-3 j_{un}^2+n^2+3 n n_{un}+3 n_{un}^2)\Bigr )\\&f_{z0} = b\\&f_{zc1} = -\frac{k_g n}{\omega _1}\\&f_{zs1}=-\frac{k_g j }{\omega _1} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settimi, V., Gottlieb, O. & Rega, G. Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dyn 79, 2675–2698 (2015). https://doi.org/10.1007/s11071-014-1840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1840-0

Keywords

Navigation