Skip to main content
Log in

Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper experimentally and numerically explores the response attenuation of a hardening Düffing oscillator using a nonlinear tuned mass damper (NTMD) and an adaptive-length pendulum tuned mass damper (APTMD). The three degrees-of-freedom system is excited by harmonic ground motions. The cubic nonlinearity of the primary structure is obtained using an adaptive passive stiffness (APS) device. When an NTMD is used alone, a high amplitude detached resonance branch in the lower frequency range is identified in the experiment, which validates the results reported in earlier numerical research. In order to attenuate this high amplitude resonance branch, an APTMD with an adaptive frequency realized by means of a variable pendulum length is used in parallel with the NTMD. In the experiment, length of the APTMD is adjusted such that its natural frequency matches the dominant frequency of the harmonic ground motions. Results indicate that the high amplitude resonance branch in the case of an NTMD alone can be greatly attenuated using the APTMD, and significant attenuation of the structural responses over a large frequency range can be obtained. In addition, the APTMD can prevent the occurrence of the “jump phenomenon” existing in the forcing response curve of the nonlinear dynamic system, thereby protecting the primary nonlinear structure effectively when the forcing amplitude varies. Therefore, the present paper provides an effective and viable solution to control the hazardous bifurcations in a Düffing oscillator-NTMD dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abe, M.: Semi-active tuned mass dampers for seismic protection of civil structures. Earthq. Eng. Struct. Dyn. 25(7), 743–749 (1996)

    Article  Google Scholar 

  2. Abe, M., Igusa, T.: Semi-active dynamics vibration absorbers for controlling transient response. J. Sound Vib. 198(5), 547–569 (1996)

    Article  Google Scholar 

  3. Alexander, N.A., Schilder, F.: Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1–2), 445–462 (2009)

    Article  Google Scholar 

  4. Arnold, F.: Steady state behavior of systems provided with nonlinear dynamic vibration absorber. J. Appl. Mech. 22, 487–492 (1955)

    MATH  MathSciNet  Google Scholar 

  5. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: Auto 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Tech. rep. (1997)

  6. Eason, R., Sun, C., Dick, A., Nagarajaiah, S.: Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series. J. Sound Vib. 332(1), 154–166 (2013)

  7. Frahm, H.: Device for damping vibration of bodies. US Pattent 989, 985 (1911)

    Google Scholar 

  8. Gendelman, O., Gourdon, E., Lamarque, C.: Quasi-periodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4–5), 651–662 (2006)

    Article  Google Scholar 

  9. Gourdon, E., Alexander, N., Taylor, C., Lamarque, C., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2006)

    Google Scholar 

  10. Hartog, J.P.D.: Mechanical Vibrations, 4th edn. McGraw-hill, New York (1956)

    MATH  Google Scholar 

  11. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G.: etc, R.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

  12. Hrovat, D., Barak, P., Rabins, M.: Semi-active versus passive or active tuned mass dampers for structural control. J. Eng. Mech. 109(3), 691–705 (1983)

    Article  Google Scholar 

  13. Hunt, J., Nissen, J.: The broadband dynamic vibration absorber. J. Sound Vib. 83(4), 487–492 (1982)

    Article  Google Scholar 

  14. Jordanov, I., Cheshankov, I.: Optimal design of linear and nonlinear dynamic vibration absorber. J. Sound Vib. 123(1), 157–170 (1989)

    Article  Google Scholar 

  15. Masri, S.: Forced vibration of a class of non-linear two-degree-of -freedom oscillators. Int. J. Non-linear Mech. 7(6), 663–674 (1972)

    Article  Google Scholar 

  16. Nagarajaiah, S.: Structural Vibration Damper with Continuously Variable Stiffness. US Patent No. 6098969 (2000)

  17. Nagarajaiah, S.: Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, hilbert transform, and short-term fourier transform. Struct. Control Health Monit. 16(7–8), 800–841 (2009)

    Article  Google Scholar 

  18. Nagarajaiah, S., Mate, D.: Semi-active control of continuously variable stiffness system. In: Proceedings of the Second World Conference on Structural Control, vol. 1, pp. 397–405. Kyoto, Japan (1998)

  19. Nagarajaiah, S., Narasimhan, S.: Seismic control of smart base isolated buildings with new semiactive variable damper. Earthq. Eng. Struct. Dyn. 36(6), 729–749 (2007)

    Article  Google Scholar 

  20. Nagarajaiah, S., Sonmez, E.: Structures with semiactive variable stiffness single/multiple tuned mass dampers. J. Struct. Eng. 133(1), 67–77 (2007)

    Article  Google Scholar 

  21. Nagarajaiah, S., Varadarajan, N.: Short time fourier transform algorithm for wind response control of buildings with variable stiffness tmd. J. Eng. Struct. 27(3), 431–441 (2005)

    Article  Google Scholar 

  22. Natsiavas, S.: Steady state oscillations and stability of non-linear dynamic vibration absorbers. J. Sound Vib. 156(2), 227–245 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  24. Ormondroyd, J., Hartog, J.P.D.: The theory of the dynamic vibration absorber. Trans. Am. Soc. Mech. Eng. 50, A9–A22 (1928)

    Google Scholar 

  25. Pipes, L.: Analysis of a nonlinear dynamic vibration absorber. J. Appl. Mech. 20, 515–518 (1953)

    MATH  Google Scholar 

  26. Rice, H.J., McCraith, J.: Practical nonlinear vibration absorber design. J. Sound Vib. 116(3), 545–559 (1986)

    Article  Google Scholar 

  27. Roberson, R.: Synthesis of a nonlinear dynamic vibration absorber. J. Franklin Inst. 254, 205–220 (1952)

    Article  MathSciNet  Google Scholar 

  28. Spencer, B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)

    Article  Google Scholar 

  29. Starosvetsky, Y., Gendelman, O.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1–2), 234–256 (2008)

    Article  Google Scholar 

  30. Sun, C.: Structural Vibration Control of Nonlinear Systems Using the Smart Tuned Mass Damper (STMD) and the Nonlinear Tuned Mass Damper (NTMD) in Parallel. Rice University, Houston (2013)

    Google Scholar 

  31. Sun, C., Eason, R., Nagarajaiah, S., Dick, A.: Hardening düffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and a multiple TMD. J. Sound Vib. 332(4), 674–686 (2013)

    Article  Google Scholar 

  32. Sun, C., Nagarajaiah, S.: Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations. Struct. Control Health Monit. (2013). doi:10.1002/stc.1620

  33. Sun, C., Nagarajaiah, S., Dick, A.: Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation. Smart Struct. Syst. 13(2), 319–341 (2014)

    Article  Google Scholar 

  34. Vakakis, A., Kounadis, A., Raftoyiannis, I.: Use of nonlinear localization for isolating structure from earthquake-induced motions. Earthq. Eng. Struct. Dyn. 28(1), 21–36 (1999)

    Article  Google Scholar 

  35. Vakakis, A., Manevitch, L., Gendelman, O.: Dynamics of linear discrete systems connected to local, essentially nonlinear attachments. J. Sound Vib. 264(3), 559–577 (2003)

    Article  Google Scholar 

  36. Varadarajan, N., Nagarajaiah, S.: Wind response control of building with variable stiffness tuned mass damper using EMD/HT. J. Eng. Mech. 130(4), 451–458 (2004)

    Article  Google Scholar 

  37. Watts, P.: On a method of reducing the rolling of ships at sea. Trans. Inst. Naval Archit. 24, 165–190 (1883)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nagarajaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Nagarajaiah, S. & Dick, A.J. Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel. Nonlinear Dyn 78, 2699–2715 (2014). https://doi.org/10.1007/s11071-014-1619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1619-3

Keywords

Navigation