Skip to main content
Log in

Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor–AMB system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a four-degree-of-freedom (4-DOF) rotor–AMB system including saturation-based active controller is considered that is used to suppress the vibrations of the rotor–AMB system at primary resonance excitation and the presence of 1:1 and 1:2 internal resonances. We obtained an approximate solution applying the multiple scales perturbation method. Then we conducted bifurcation analyses for both the open and closed loop systems. The stability of the system is investigated applying the Lyapunov first method. The effects of different controller parameters on the main system’s behavior are studied. Optimum working conditions of the system are extracted to be used in the design of such systems. Finally, numerical simulations are performed to validate the saturation control law. We found that all predictions from analytical solutions are in close agreement to the numerical simulation. At the end of the work, a comparison with the available published work is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bleuler, H., Cole, M., Keogh, P., Larsonneur, R., Maslen, E., Nordmann, R., Okada, Y., Schweitzer, G., Traxler, A.: Magnetic Bearings Theory, Design, and Application to Rotating Machinery. Springer, Berlin (2009)

    Google Scholar 

  2. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 240, 599–612 (2001)

    Article  Google Scholar 

  3. Ji, J.C., Yu, L., Leung, A.Y.T.: Bifurcation behavior of a rotor by active magnetic bearings. J. Sound Vib. 235, 133–151 (2000)

    Article  Google Scholar 

  4. Ji, J.C., Leung, A.Y.T.: Non-linear oscillations of a rotor–magnetic bearing system under super harmonic resonance conditions. Int. J. Non-Linear Mech. 38, 829–835 (2003)

    Article  MATH  Google Scholar 

  5. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor–active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41, 331–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang, W., Yao, M.H., Zhan, X.P.: Multi-pulse chaotic motions of a rotor–active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 27, 175–186 (2006)

    Article  Google Scholar 

  7. Zhang, W., Zu, J.W., Wang, F.X.: Global bifurcations and chaos for a rotor–active magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 35, 586–608 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eissa, M., Amer, Y.A., Hegazy, U.H., Sabbah, A.S.: Dynamic behavior of an AMB/supported rotor subject to parametric excitation. J. Vib. Acoust. 128, 646–652 (2006)

    Article  Google Scholar 

  9. Eissa, M., Hegazy, U.H., Amer, Y.A.: Dynamic behavior of an AMB supported rotor subject to harmonic excitation. Appl. Math. Model 32, 1370–1380 (2008)

    Article  MATH  Google Scholar 

  10. Kamel, M., Bauomy, H.S.: Nonlinear study of a rotor–AMB system under simultaneous primary-internal resonance. Appl. Math. Model 34, 2763–2777 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kamel, M., Bauomy, H.S.: Nonlinear behavior of a rotor–AMB system under multi-parametric excitations. Meccanica 45, 7–22 (2010)

    Article  MATH  Google Scholar 

  12. Amer, Y.A., Hegazy, U.H.: Resonance behavior of a rotor–active magnetic bearing with time-varying stiffness. Chaos Solitons Fractals 34, 1328–1345 (2007)

    Article  Google Scholar 

  13. Eissa, M., Hegazy, U.H., Amer, Y.A.: A time-varying stiffness rotor–active magnetic bearings under combined resonance. J. Appl. Mech. 75, 1–12 (2008)

    Google Scholar 

  14. Amer, Y.A., Hegazy, U.H.: A time-varying stiffness rotor–active magnetic bearings under parametric excitation. J. Mech. Eng. Sci. Part C 222, 447–458 (2008)

    Article  Google Scholar 

  15. Bauomy, H.S.: Stability analysis of a rotor–AMB with time varying stiffness. J. Franklin Inst. 349, 1871–1890 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eissa, M., Kamel, M., Bauomy, H.S.: Dynamics of an AMB–rotor with time varying stiffness and mixed excitations. Meccanica 47, 585–601 (2012)

    Article  MathSciNet  Google Scholar 

  17. Nayfeh, A., Mook, D., Marshall, L.: Non-linear coupling of pitch and roll modes in ship motion. J. Hydronaut. 7, 145–152 (1973)

    Article  Google Scholar 

  18. Haddow, A., Barr, A., Mook, D.: Theoretical and experimental study of modal interaction in a tow-degree-of-freedom structure. J. Sound Vib. 97, 451–473 (1984)

    Article  MathSciNet  Google Scholar 

  19. Nayfeh, A., Zavodeny, L.: Experimental observation of amplitude and phase-modulated response of tow internally coupled oscillators to a harmonic excitation. J. Appl. Mech. 110, 706–710 (1988)

    Article  Google Scholar 

  20. Balachandran, B., Nayfeh, A.: Observation of modal interactions in resonantly forced beam-mass. Nonlinear Dyn. 2, 77–117 (1991)

    Article  Google Scholar 

  21. Li, J., Hua, H., Shen, R.: Saturation-based absorber for a non-linear plant to a principal external excitation. Mech. Syst. Signal Process. 21, 1489–1498 (2007)

    Article  Google Scholar 

  22. Li, J., Li, X., Hua, H.: Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant. Commun. Nonlinear Sci. Numer. Simul. 15, 1071–1079 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74, 1–20 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nayfeh, A.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  25. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Saeed.

Appendix

Appendix

Introducing nondimensional parameters \(u = c_{0}\hat{u}\), \(v = c_{0}\hat{v}\), \(i_{u} = I_{0}\hat{i}_{u}\), \(i_{v} = I_{0}\hat{i}_{v}\), and \(t = \zeta\hat{t}\), \(\varOmega= \zeta^{ - 1}\hat{\varOmega}\), omitting Hat for brevity, Eqs. (5) can be rearranged as

$$\begin{aligned} f_{u} &= \frac{I_{0}^{2}\mu_{0}N^{2}A\cos(\phi )}{4c_{0}^{2}} \bigl[ - 8\zeta c_{0}k_{d} \cos(\alpha)\dot{u} \\ &\quad+ 8 \bigl( 1 - c_{0}k_{p}\cos(\alpha ) \bigr)u + \bigl( 16 \bigl( \cos^{4}(\alpha) \\ &\quad+ \sin^{4}( \alpha) \bigr) - 24c_{0}k_{p}\cos^{3}(\alpha) \\ &\quad+ 8c_{0}^{2}k_{p}^{2}\cos^{2}( \alpha) \bigr)u^{3} + \bigl( 8c_{0}^{2}k_{p}^{2} \sin^{2}(\alpha) \\ &\quad- 72c_{0}k_{p}\cos(\alpha) \sin^{2}(\alpha) \\ &\quad+ 96\cos^{2}(\alpha)\sin^{2}( \alpha) \bigr)uv^{2} + \bigl( 16c_{0}^{2}\zeta k_{p}k_{d}\cos^{2}(\alpha) \\ &\quad- 24\zeta c_{0}k_{d}\cos^{3}(\alpha) \bigr)u^{2} \dot{u} \\ &\quad- \bigl( 24\zeta c_{0}K_{d}\cos(\alpha) \sin^{2}(\alpha) \bigr)\dot{u}v^{2} \\ &\quad+ 8\zeta^{2}c_{0}^{2}k_{d}^{2} \sin^{2}(\alpha)u\dot{v}^{2} + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \cos^{2}(\alpha)u\dot{u}^{2} \\ &\quad+ \bigl( - 48\zeta c_{0}k_{d}\cos(\alpha)\sin^{2}(\alpha) \\ &\quad+ 16 \zeta c_{0}^{2}k_{d}k_{p} \sin^{2}(\alpha) \bigr)uv\dot{v} \\ &\quad+ \bigl( 8c_{0}^{2} \psi_{1}\cos(\alpha)x^{2} \bigr) \bigr] \end{aligned}$$
(64)
$$\begin{aligned} f_{v} &= \frac{I_{0}^{2}\mu_{0}N^{2}A\cos(\phi )}{4c_{0}^{2}} \bigl[ - 8\zeta c_{0}k_{d} \cos(\alpha)\dot{v} \\ &\quad+ 8 \bigl( 1 - c_{0}k_{p}\cos(\alpha ) \bigr)v \\ &\quad+ \bigl( 16 \bigl( \cos^{4}(\alpha) + \sin^{4}( \alpha) \bigr) - 24c_{0}k_{p}\cos^{3}(\alpha) \\ &\quad+ 8c_{0}^{2}k_{p}^{2}\cos^{2}( \alpha) \bigr)v^{3} + \bigl( 8c_{0}^{2}k_{p}^{2} \sin^{2}(\alpha) \\ &\quad- 72c_{0}k_{p}\cos(\alpha) \sin^{2}(\alpha) \\ &\quad+ 96\cos^{2}(\alpha)\sin^{2}( \alpha) \bigr)vu^{2} + \bigl( 16c_{0}^{2}\zeta k_{p}k_{d}\cos^{2}(\alpha) \\ &\quad- 24\zeta c_{0}k_{d}\cos^{3}(\alpha) \bigr)v^{2} \dot{v} \\ &\quad- \bigl( 24\zeta c_{0}K_{d}\cos(\alpha) \sin^{2}(\alpha) \bigr)\dot{v}u^{2} \\ &\quad + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \sin^{2}(\alpha)v\dot{u}^{2} + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \cos^{2}(\alpha)v\dot{v}^{2} \\ &\quad + \bigl( - 48\zeta c_{0}k_{d}\cos(\alpha)\sin^{2}(\alpha) \\ &\quad+ 16 \zeta c_{0}^{2}k_{d}k_{p} \sin^{2}(\alpha) \bigr)vu\dot{u} + \bigl( 8c_{0}^{2} \psi_{2}\cos(\alpha)y^{2} \bigr) \bigr] \end{aligned}$$
(65)

We can rewrite Eq. (7) as

$$\begin{aligned} &c_{0}\zeta^{2}\ddot{u} - \frac{1}{m}f_{u} + \frac{cc_{0}\zeta}{m}\dot{u} = e\cos(\varOmega t) \end{aligned}$$
(66)
$$\begin{aligned} &c_{0}\zeta^{2}\ddot{v} - \frac{1}{m}f_{v} + \frac{cc_{0}\zeta}{m}\dot{v} = e\sin(\varOmega t) \end{aligned}$$
(67)

Substituting Eq. (64) into (66) and (65) into (67), respectively, we get

$$\begin{aligned} &\ddot{u} - \frac{I_{0}^{2}\mu_{0}N^{2}A\cos(\phi )}{4mc_{0}^{3}\zeta^{2}} \bigl[ - 8\zeta c_{0}k_{d} \cos(\alpha)\dot{u} \\ &\qquad+ 8 \bigl( 1 - c_{0}k_{p}\cos(\alpha ) \bigr)u + \bigl( 16 \bigl( \cos^{4}(\alpha) \\ &\qquad+ \sin^{4}( \alpha) \bigr) - 24c_{0}k_{p}\cos^{3}(\alpha) + 8c_{0}^{2}k_{p}^{2}\cos^{2}( \alpha) \bigr)u^{3} \\ &\qquad+ \bigl( 8c_{0}^{2}k_{p}^{2} \sin^{2}(\alpha) - 72c_{0}k_{p}\cos(\alpha) \sin^{2}(\alpha) \\ &\qquad+ 96\cos^{2}(\alpha)\sin^{2}( \alpha) \bigr)uv^{2} + \bigl( 16c_{0}^{2}\zeta k_{p}k_{d}\cos^{2}(\alpha) \\ &\qquad- 24\zeta c_{0}k_{d}\cos^{3}(\alpha) \bigr)u^{2} \dot{u} \\ &\qquad- \bigl( 24\zeta c_{0}K_{d}\cos(\alpha) \sin^{2}(\alpha) \bigr)\dot{u}v^{2} \\ &\qquad+ 8\zeta^{2}c_{0}^{2}k_{d}^{2} \sin^{2}(\alpha)u\dot{v}^{2} + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \cos^{2}(\alpha)u\dot{u}^{2} \\ &\qquad+ \bigl( - 48\zeta c_{0}k_{d}\cos(\alpha)\sin^{2}(\alpha) \\ &\qquad+ 16 \zeta c_{0}^{2}k_{d}k_{p} \sin^{2}(\alpha) \bigr)uv\dot{v} \\ &\qquad+ \bigl( 8c_{0}^{2} \psi_{1}\cos(\alpha)x^{2} \bigr) \bigr] + \frac{c}{m\zeta} \dot{u} \\ &\quad = \frac{e}{c_{0}\zeta^{2}}\cos(\varOmega t) \end{aligned}$$
(68)
$$\begin{aligned} & \ddot{v} - \frac{I_{0}^{2}\mu_{0}N^{2}A\cos(\phi )}{4mc_{0}^{3}\zeta^{2}} \bigl[ - 8\zeta c_{0}k_{d} \cos(\alpha)\dot{v} \\ &\qquad+ 8 \bigl( 1 - c_{0}k_{p}\cos(\alpha ) \bigr)v + \bigl( 16 \bigl( \cos^{4}(\alpha) \\ &\qquad+ \sin^{4}( \alpha) \bigr) - 24c_{0}k_{p}\cos^{3}(\alpha) \\ &\qquad+ 8c_{0}^{2}k_{p}^{2}\cos^{2}( \alpha) \bigr)v^{3} + \bigl( 8c_{0}^{2}k_{p}^{2} \sin^{2}(\alpha) - 72c_{0}k_{p} \\ &\qquad\times\cos(\alpha) \sin^{2}(\alpha) + 96\cos^{2}(\alpha)\sin^{2}( \alpha) \bigr)vu^{2} \\ &\qquad+ \bigl( 16c_{0}^{2}\zeta k_{p}k_{d}\cos^{2}(\alpha) - 24\zeta c_{0}k_{d}\cos^{3}(\alpha) \bigr)v^{2} \dot{v} \\ &\qquad- \bigl( 24\zeta c_{0}K_{d}\cos(\alpha) \sin^{2}(\alpha) \bigr)\dot{v}u^{2} + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \\ &\qquad\times \sin^{2}(\alpha)v\dot{u}^{2} + 8\zeta^{2}c_{0}^{2}k_{d}^{2} \cos^{2}(\alpha)v\dot{v}^{2} \\ &\qquad+ \bigl( - 48\zeta c_{0}k_{d}\cos(\alpha)\sin^{2}(\alpha) \\ &\qquad+ 16 \zeta c_{0}^{2}k_{d}k_{p} \sin^{2}(\alpha) \bigr)vu\dot{u} + \bigl( 8c_{0}^{2} \psi_{2}\cos(\alpha)y^{2} \bigr) \bigr] \\ &\qquad+ \frac{c}{m\zeta} \dot{v} \\ &\quad= \frac{e}{c_{0}\zeta^{2}}\sin(\varOmega t) \end{aligned}$$
(69)

Putting \(\zeta^{2} = \frac{I_{0}^{2}\mu_{0}N^{2}A\cos(\phi )}{4mc_{0}^{3}}\), p=c 0 k p , d=ζc 0 k d , \(c_{1} = \frac{c}{m\zeta}\), \(f = \frac{e}{c_{0}\zeta^{2}}\) at Eqs. (68) and (69), we get

$$\begin{aligned} &\ddot{u} + 2\mu\dot{u} + \omega u - \bigl(\alpha_{1}u^{3} + \alpha_{2}uv^{2} \\ &\qquad+ \alpha_{3}u^{2} \dot{u} + \alpha_{4}\dot{u}v^{2} + \alpha_{5}u \dot{v}^{2} + \alpha_{6}u\dot{u}^{2} + \alpha_{7}uv\dot{v}\bigr) \\ &\quad= f\cos(\varOmega t) + \gamma_{1}x^{2} \end{aligned}$$
(70)
$$\begin{aligned} &\ddot{v} + 2\mu\dot{v} + \omega v - \bigl(\alpha_{1}v^{3} + \alpha_{2}vu^{2} + \alpha_{3}v^{2} \dot{v} + \alpha_{4}\dot{v}u^{2} \\ &\qquad+ \alpha_{5}v \dot{u}^{2} + \alpha_{6}v\dot{v}^{2} + \alpha_{7}vu\dot{u}\bigr) \\ &\quad= f\sin(\varOmega t) + \gamma_{2}y^{2} \end{aligned}$$
(71)

where

$$\begin{aligned} &2\mu= c_{1} + 8d\cos(\alpha),\qquad \omega= 8 \bigl( p\cos (\alpha) - 1 \bigr) \\ & \begin{aligned}[t] \alpha_{1} &= 16\bigl(\cos^{4}(\alpha) + \sin^{4}(\alpha)\bigr) - 24p\cos^{3}(\alpha) \\ &\quad+ 8p^{2}\cos^{2}(\alpha) \end{aligned} \\ & \begin{aligned}[t] \alpha_{2} &= 8p^{2}\sin^{2}(\alpha) - 72p\cos( \alpha)\sin^{2}(\alpha)\\ &\quad + 96\cos^{2}(\alpha) \sin^{2}(\alpha) \end{aligned} \\ &\alpha_{3} = 16pd\cos^{2}(\alpha) - 24d\cos^{3}( \alpha) \\ & \alpha_{4} = - 24d\cos(\alpha)\sin^{2}(\alpha),\qquad \alpha_{5} = 8d^{2}\sin^{2}(\alpha) \\ & \alpha_{6} = 8d^{2}\cos^{2}(\alpha),\\ & \alpha_{7} = - 48d\cos(\alpha)\sin^{2}(\alpha) + 16pd \sin^{2}(\alpha) \\ &\gamma_{1} = 8c_{0}^{2}\psi_{1}\cos( \alpha),\qquad \gamma_{2} = 8c_{0}^{2}\psi_{2} \cos(\alpha) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eissa, M., Saeed, N.A. & El-Ganini, W.A. Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor–AMB system. Nonlinear Dyn 76, 743–764 (2014). https://doi.org/10.1007/s11071-013-1166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1166-3

Keywords

Navigation