Skip to main content
Log in

Turing instability and pattern formation of neural networks with reaction–diffusion terms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a model for a network of neurons with reaction–diffusion is investigated. By analyzing the linear stability of the system, Hopf bifurcation and Turing unstable conditions are obtained. Based on this, standard multiple-scale analysis is used for deriving the amplitude equations of the model for the excited modes in the Turing bifurcation. Moreover, the stability of different patterns is also determined. The obtained results enrich the dynamics of neurons’ network system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Trans. Biomed. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chua, L., Yang, L.: Cellular neural networks: applications. IEEE Trans. Biomed. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  3. Liu, Y., Wang, Z., Member, S., Liang, J., Liu, X.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays. IEEE Trans. Neural Netw. 20, 1102–1116 (2009)

    Article  Google Scholar 

  4. Yang, Z., Xu, D.: Stability analysis of delay neural networks with impulsive effects. IEEE Trans. Circuits Syst. 52, 517–521 (2005)

    Article  Google Scholar 

  5. Yu, W., Cao, J., Chen, G.: Stability and Hopf bifurcation of a general delayed recurrent neural network. IEEE Trans. Neural Netw. 19, 845–854 (2008)

    Article  Google Scholar 

  6. Forti, M., Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Biomed. Circuits Syst. 42(7), 354–366 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Huang, T., Li, C.D., Duan, S.K., Starzyk, J.A., Louvieris, P.: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. 23, 866–875 (2012)

    Article  Google Scholar 

  8. Cao, J., Xiao, M.: Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. IEEE Trans. Neural Netw. 18, 416–430 (2007)

    Article  Google Scholar 

  9. Xu, D., Zhao, H.: Invariant and attracting sets of Hopfield neural networks with delay. Int. J. Inf. Syst. Sci. 32(7), 863–866 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, T., Wang, L.: Global-stability of delayed neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. 18, 1836–1840 (2007)

    Article  Google Scholar 

  11. Zhao, H.: Global stability of bidirectional associative memory neural networks with distributed delays. Phys. Lett. A 297, 182–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, L., Xu, D.: Global exponential stability of Hopfield reaction–diffusion neural networks with time-varying delays. Sci. China, Ser. F 46, 466–474 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhao, H., Wang, K.: Dynamical behaviors of Cohen–Grossberg neural networks with delays and reaction–diffusion terms. Neurocomputing 70, 536–543 (2006)

    Article  Google Scholar 

  14. Qiu, J.: Exponential stability of impulsive neural networks with time-varying delays and reaction–diffusion terms. Neurocomputing 70, 1102–1108 (2007)

    Article  Google Scholar 

  15. Wang, L.: Global exponential robust stability of reaction–diffusion interval neural networks with time-varying delays. Phys. Lett. A 350, 342–348 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liang, J., Cao, J.D.: Global exponential stability of reaction–diffusion recurrent neural networks with time-varying delays. Phys. Lett. A 34, 434–442 (2003)

    Article  MathSciNet  Google Scholar 

  17. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237, 37–72 (1952)

    Article  Google Scholar 

  18. Zhang, X., Sun, G., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  Google Scholar 

  19. Liao, X., Li, J.: Stability in Gilpin–Ayala competition models with diffusion. Nonlinear Anal. 28(10), 1751–1758 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Xue, L.: Pattern formation in a predator–prey model with spatial effect. Physica A (2012). doi:10.1016/j.physa

    Google Scholar 

  21. Ou, Y.: Pattern Formation in Reaction–Diffusion Systems. Shanghai Sci-Tech Education Publishing House, Shanghai (2000)

    Google Scholar 

  22. Wang, W., Lin, Y., Zhang, L., Rao, F., Tan, Y.: Complex patterns in a predator–prey model with self and cross-diffusion. Commun. Nonlinear Sci. Numer. Simul. 16, 2006–2015 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vogels, T., Rajan, K., Abbott, L.: Neural network dynamics. Annu. Rev. Neurosci. 28, 76–357 (2005)

    Article  Google Scholar 

  24. Goras, L., Leenaters, D.: Turing patterns in CNNS. Part I. Once over lightly. IEEE Trans. Circuits Syst. 42, 602–611 (1995)

    Article  Google Scholar 

  25. Goras, L., Chua, L.O.: Turing patterns in CNNs. II. Equations and behaviors. IEEE Trans. Circuits Syst. 42, 612–626 (1995)

    Article  Google Scholar 

  26. Goras, L., Chua, L., Pivka, L.: Turing patterns in CNNs. III. Computer simulation results. IEEE Trans. Circuits Syst. 42, 627–637 (1995)

    Article  Google Scholar 

  27. Wang, L., Zhao, H.Y., Hu, W.: Bifurcation and Turing instability of a class of reaction–diffusion neural networks. In: IEEE Fifth International Conference on Advanced Computational Intelligence, Nanjing, China, pp. 976–982 (2012)

    Google Scholar 

  28. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 64, 1196–1199 (1990)

    MATH  MathSciNet  Google Scholar 

  29. Zhao, H.Y., Yuan, J.L., Hu, W.: Time-delay control of stability and Turing pattern structures of neural networks. IET Control Theory Appl. 30, 288–298 (2013) (in Chinese)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the referee for his or her valuable comments and suggestions that led to truly significant improvement of the manuscript. This research is supported by the National Natural Science Foundation of China (Nos. 61174155 and 11032009). The work is also sponsored by Qing Lan Project of Jiangsu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Huang, X. & Zhang, X. Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn 76, 115–124 (2014). https://doi.org/10.1007/s11071-013-1114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1114-2

Keywords

Navigation