Skip to main content
Log in

Triple mode alignment in a canonical model of the blue-sky catastrophe

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The blue-sky catastrophe (BSC) is a homoclinic bifurcation of a saddle node periodic orbit of codimension one, which has been found to occur in a number of physically relevant dynamics systems. The onset and termination of the BSC in a chaotic system is shown to coincide with the occurrence of triple mode alignment in a canonical model undergoing the BSC when the model is recast as an oscillator system. Typically, such behavior is only seen in hyperchaotic systems of dimension greater than three. Hence, in the case of three dimensional chaotic systems, competitive modes may under some circumstances be used in the prediction of the blue-sky catastrophe. Limitations to this approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hunt, K.L.C., Hunt, P.M., Ross, J.: Nonlinear dynamics and thermodynamics of chemical reactions far from equilibrium. Annu. Rev. Phys. Chem. 41, 409 (1990)

    Article  Google Scholar 

  2. Thompson, M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)

    MATH  Google Scholar 

  3. Turaev, D.V., Shilnikov, L.P.: Blue sky catastrophes. Dokl. Math. 51, 404 (1995)

    MATH  Google Scholar 

  4. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101 (2005)

    Article  Google Scholar 

  5. Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98, 134101 (2007)

    Article  Google Scholar 

  6. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abraham, R.H., Steward, H.B.: A chaotic blue sky catastrophe in forced relaxation oscillations. Physica 21D, 394 (1986)

    Google Scholar 

  8. Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the double-well Duffing Van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 56, 6321 (1997)

    Article  MathSciNet  Google Scholar 

  9. Knudsen, C., Sturis, J., Thomsen, J.S.: Generic bifurcation structures of Arnol’d tongues in forced oscillators. Phys. Rev. A 44, 3503 (1991)

    Article  Google Scholar 

  10. Franciosi, C.: Oscillations of torus and collision torus-chaos in a delayed circle map. Prog. Theor. Phys. 76, 302 (1986)

    Article  MathSciNet  Google Scholar 

  11. Meca, E., Mercader, I., Batiste, O., Ramírez-Piscina, L.: Blue sky catastrophe in double-diffusive convection. Phys. Rev. Lett. 92, 234501 (2004)

    Article  Google Scholar 

  12. Abshagen, J., Lopez, J.M., Marques, F., Pfister, G.: Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow. J. Fluid Mech. 613, 357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. McCann, K., Yodzis, P.: Nonlinear dynamics and population disappearances. Am. Nat. 144(5), 873 (1994)

    Article  Google Scholar 

  14. Schreiber, S.J.: Chaos and population disappearances in simple ecological models. J. Math. Biol. 42, 239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chin, C.-M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20, 131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nordstrom Jensen, C., True, H.: On a new route to chaos in railway dynamics. Nonlinear Dyn. 13, 117 (1997)

    Article  Google Scholar 

  17. Gao, X.-J., Li, Y.-H., Yue, Y.: The “resultant bifurcation diagram” method and its application to bifurcation behaviors of a symmetric railway bogie system. Nonlinear Dyn. 70, 363 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hong, L., Sun, J.-Q.: A fuzzy blue sky catastrophe. Nonlinear Dyn. 55, 261 (2009)

    Article  MATH  Google Scholar 

  19. McRobie, F.A.: Birkhoff signature change: a criterion for the instability of chaotic resonance. Philos. Trans. R. Soc. Lond. A 338, 557 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yao, W., Yu, P., Essex, C.: Estimation of chaotic parameter regimes via generalized competitive mode approach. Commun. Nonlinear Sci. Numer. Simul. 7, 197 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, P., Yao, W., Chen, G.: Analysis on topological properties of the Lorenz and the Chen attractors using GCM. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17, 2791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Z., Wu, Z.Q., Yu, P.: The critical phenomena in a hysteretic model due to the interaction between hysteretic damping and external force. J. Sound Vib. 284, 783 (2005)

    Article  MATH  Google Scholar 

  23. Yao, W., Yu, P., Essex, C., Davison, M.: Competitive modes and their application. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 497 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Van Gorder, R.A., Choudhury, S.R.: Classification of chaotic regimes in the T system by use of competitive modes. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20, 3785 (2010)

    Article  MATH  Google Scholar 

  25. Van Gorder, R.A.: Emergence of chaotic regimes in the generalized Lorenz canonical form: a competitive modes analysis. Nonlinear Dyn. 66, 153 (2011)

    Article  Google Scholar 

  26. Choudhury, S.R., Van Gorder, R.A.: Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors. Nonlinear Dyn. 69, 2255 (2012)

    Article  Google Scholar 

  27. Gavrilov, N., Shilnikov, A.: Example of a blue sky catastrophe. In: Methods of Qualitative Theory of Differential Equations and Related Topics. AMS Transl. Series II, vol. 200, pp. 99–105 (2000)

    Google Scholar 

  28. Shilnikov, L., Shilnikov, A., Turaev, D., Chua, L.: Methods of Qualitative Theory in Nonlinear Dynamics. Part II. World Scientific, Singapore (2001)

    Google Scholar 

  29. Ahn, C.K.: An answer to the open problem of synchronization for time-delayed chaotic systems. Eur. Phys. J. Plus 127(2), 1–9 (2012)

    Article  Google Scholar 

  30. Ahn, C.K.: A T–S fuzzy model based adaptive exponential synchronization method for uncertain delayed chaotic systems: an LMI approach. Arch. Inequal. Appl. 2010, 168962 (2010)

    Article  Google Scholar 

  31. Ahn, C.K.: Neural network H chaos synchronization. Nonlinear Dyn. 60, 295–302 (2010)

    Article  MATH  Google Scholar 

  32. Ahn, C.K., Jung, S.T., Kang, S.K., Joo, S.C.: Adaptive H synchronization for uncertain chaotic systems with external disturbance. Commun. Nonlinear Sci. Numer. Simul. 15, 2168–2177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ahn, C.K.: T-S fuzzy H synchronization for chaotic systems via delayed output feedback control. Nonlinear Dyn. 59, 535–543 (2010)

    Article  MATH  Google Scholar 

  34. Ahn, C.K.: L 2L chaos synchronization. Prog. Theor. Phys. 123, 421–430 (2010)

    Article  MATH  Google Scholar 

  35. Ahn, C.K.: Fuzzy delayed output feedback synchronization for time-delayed chaotic systems. Nonlinear Anal. Hybrid Syst. 4, 16–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ahn, C.K.: Output feedback H synchronization for delayed chaotic neural networks. Nonlinear Dyn. 59, 319–327 (2010)

    Article  MATH  Google Scholar 

  37. Ahn, C.K.: Adaptive H anti-synchronization for time-delayed chaotic neural networks. Prog. Theor. Phys. 122, 1391–1403 (2009)

    Article  MATH  Google Scholar 

  38. Ahn, C.K.: An H approach to anti-synchronization for chaotic systems. Phys. Lett. A 373, 1729–1733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R.A.V. was supported in part by NSF grant # 1144246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gorder, R.A. Triple mode alignment in a canonical model of the blue-sky catastrophe. Nonlinear Dyn 73, 397–403 (2013). https://doi.org/10.1007/s11071-013-0794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0794-y

Keywords

Navigation