Skip to main content
Log in

Hamilton–Jacobi and fractional like action with time scaling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper represents the Hamilton–Jacobi formulation for fractional variational problem with fractional like action written as an integration over a time scaling parameter. Also we developed the fractional Hamiltonian formulation for the fractional like action. In all the given calculations, the most popular Riemann–Liouville (RL) and Caputo fractional derivatives are employed. An example illustrates our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  3. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, London (2005)

    MATH  Google Scholar 

  4. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publisher, Connecticut (2006)

    Google Scholar 

  6. Klimek, M.: Fractional sequential mechanics models with symmetric fractional derivative. Czechoslov. J. Phys. 51, 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dreisigmeyer, D.W., Young, P.M.: Extending Bauer’s corollary to fractional derivatives. J. Phys. A, Math. Gen. 37 L117, (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tofighi, A., Pour, H.N.: Epsilon-expansion and the fractional oscillator. Physica A 374(1), 41–45 (2007)

    Article  Google Scholar 

  10. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baleanu, D., Muslih, S.: New trends in fractional quantization method. In: Intelligent Systems at the Service of Mankind, vol. 2, 1st edn. U-Books, Augsburg (2005)

    Google Scholar 

  12. Baleanu, D.: Constrained systems and Riemann–Liouville fractional derivatives. In: Fractional Differentiation and Its Applications. U-Books, Augsburg (2005)

    Google Scholar 

  13. Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baleanu, D.: Fractional Hamiltonian analysis of irregular systems. Signal Process. 86(10), 2632–2636 (2006)

    Article  MATH  Google Scholar 

  15. Muslih, S., Baleanu, D.: Formulation of Hamiltonian equations for fractional variational problems. Czechoslov. J. Phys. 55(6), 633–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields with Riemann-Liouville fractional derivatives. Phys. Scr. 72(2–3), 119–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Agrawal, O.P., Baleanu, D.: Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1217–1237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rabei, E.M., Ajlouni, A.W., Ghassib, H.B.: Quantization of Brownian motion. Int. J. Theor. Phys. 45(9), 1613–1623 (2006)

    Article  MathSciNet  Google Scholar 

  19. Rabei, E.M., Al-Halholy, T., Rousan, A.: Potentials of arbitrary forces with fractional derivatives. Int. J. Mod. Phys. A 19, 3083–3092 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agrawal, O.P.: Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of Caputo derivative. In: Proc. MME06, Ankara, Turkey, 27–29 April (2006)

    Google Scholar 

  21. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56(10–11), 1087–1092 (2006)

    Article  MathSciNet  Google Scholar 

  22. Rabei, E.M., Ababenh, B.S.: Hamilton–Jacobi fractional mechanics. J. Math. Anal. Appl. 344, 799–805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabei, E.M., Altarazi, I.A., Muslih, S.I., Baleanu, D.: Fractional WKB approximation. Nonlinear Dyn. 57(1–2), 171–175 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rasinariu, C., Dykla, J.J., Gangopdhyaya, A., Mallow, J.V.: Exactly solvable systems and the quantum Hamilton–Jacobi formalism. Phys. Lett. A 338(3–5), 197–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Corrias, L., Falcone, M., Natalini, R.: Numerical schemes for conservation laws via Hamilton–Jacobi equations. Math. Comput. 64, 555–580 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chia-Chun, C., Robert, W.: Computational method for the quantum Hamilton–Jacobi equation: Bound states in one dimension. J. Chem. Phys. 125, 174103 (2006)

    Article  Google Scholar 

  27. Djama, T.: The 3D quantum stationary Hamilton–Jacobi equation for symmetrical potentials. Phys. Scr. 75(1), 77–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Imbert, C.: A non-local regularization of first order Hamilton–Jacobi equations. J. Differ. Equ. 211, 218–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vance, W., Ross, J.: Master equation approach to synchronization in diffusion-coupled nonlinear oscillators. Phys. Rev. E 62, 3303–3310 (2000)

    Article  MathSciNet  Google Scholar 

  30. Amour, L., Ben-Artzi, M.: Global existence and decay for viscous Hamilton–Jacobi equations. Nonlinear Anal. 31, 621–628 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Benachour, S., Karch, S.G., Laurencot, P.: Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 83, 1275–1308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laurencot, P., Souplet, P.: On the growth of mass for a viscous Hamilton–Jacobi equation. J. Anal. Math. 89, 367–384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karch, G., Woyczynski, W.A.: Fractal Hamilton–Jacobi–KPZ equations. arXiv:math/0601712 [math. AP] (2006)

  34. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Google Scholar 

  35. Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58(1–2), 385–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  37. Rabei, E.M., Almayteh, I., Muslih, S.I., Baleanu, D.: Hamilton–Jacobi formulation of systems within Caputo’s fractional derivative. Phys. Scr. 77(1), 015101 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzallah, M.A.E., Muslih, S.I., Baleanu, D. et al. Hamilton–Jacobi and fractional like action with time scaling. Nonlinear Dyn 66, 549–555 (2011). https://doi.org/10.1007/s11071-010-9933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9933-x

Keywords

Navigation