Skip to main content
Log in

Nonlinear response of a flexible Cartesian manipulator with payload and pulsating axial force

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this present work, the nonlinear response of a single-link flexible Cartesian manipulator with payload subjected to a pulsating axial load is determined. The nonlinear temporal equation of motion is derived using D’Alembert’s principle and generalised Galerkin’s method. Due to large transverse deflection of the manipulator, the equation of motion contains cubic geometric and inertial types of nonlinearities along with linear and nonlinear parametric and forced excitation terms. Method of normal forms is used to determine the approximate solution and to study the dynamic stability and bifurcations of the system. These results are found to be in good agreement with those obtained by numerically solving the temporal equation of motion. Influences of amplitude of the base excitation, mass ratio, and amplitude of static and dynamic axial load on the steady state responses of the system are investigated for three different resonance conditions. For some specific conditions, the results obtained in this work are found to be in good agreement with the previously published experimental work. The results obtained in this work will find applications in the design of flexible Cartesian manipulators with payload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwivedy, S.K., Eberdhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41, 749–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coleman, M.P.: Vibration eigenfrequency analysis of a single-link flexible manipulator. J. Sound Vib. 212, 107–120 (1998)

    Article  Google Scholar 

  3. Poppelwell, N., Chang, D.: Influence of an offset payload on a flexible manipulator. J. Sound Vib. 190, 721–725 (1996)

    Article  Google Scholar 

  4. Coleman, M.P., McSweeney, L.A.: Analysis and computation of the vibration spectrum of the Cartesian flexible manipulator. J. Sound Vib. 274, 445–454 (2004)

    Article  Google Scholar 

  5. Tadikonda, S.S.K., Baruh, H.: Dynamics and control of a flexible beam with a prismatic joint. ASME J. Dyn. Syst. Meas. Control 114, 422–427 (1992)

    Article  Google Scholar 

  6. Buffinton, K.W.: Dynamics of elastic manipulators with prismatic joints. ASME J. Dyn. Syst. Meas. Control 114, 41–49 (1992)

    Article  MATH  Google Scholar 

  7. Hou, X., Tsui, S.K.: A control theory for Cartesian flexible robot arms. J. Math. Anal. Appl. 225, 265–288 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chalhoub, N.G., Foury, G.A.K., Bazzi, B.A.: Design of robust controllers and a nonlinear observer for the control of a single-link flexible robotic manipulator. J. Sound Vib. 291, 437–461 (2006)

    Article  Google Scholar 

  9. Shaker, C.M., Ghosal, A: Nonlinear modelling of flexible manipulators using nondimensional variables. ASME J. Comput. Nonlinear Dyn. 1, 123–134 (2006)

    Article  Google Scholar 

  10. Kim, H.S., Tsai, L.W.: Design optimisation of a Cartesian parallel manipulator. ASME J. Mech. Des. 125, 43–51 (2003)

    Article  Google Scholar 

  11. Wang, F.Y.: On the extremal fundamental frequencies of one-link flexible manipulators. Int. J. Robot Res. 13, 162–170 (1994)

    Article  Google Scholar 

  12. Russell, J.L.: Optimisation models for flexible manipulators. Ph.D. dissertation, Department of Systems and Industrial Engineering, University of Arizona, Tucson (1995)

  13. Dixit, U.S., Kumar, R., Dwivedy, S.K.: Shape optimisation of flexible robotic manipulators. ASME J. Mech. Des. 128, 559–565 (2006)

    Article  Google Scholar 

  14. Fung, R.F., Chang, H.C.: Dynamic modelling of a non-linearly constrained flexible manipulator with a tip mass by Hamilton’s principle. J. Sound Vib. 216, 640–658 (1998)

    Article  Google Scholar 

  15. Ankarali, A., Diken, H.: Vibration control of an elastic manipulator link. J. Sound Vib. 204, 162–170 (1997)

    Article  Google Scholar 

  16. Wang, F.Y., Guan, G.: Influence of rotary inertia, shear and loading on vibration of flexible manipulators. J. Sound Vib. 171, 433–452 (1994)

    Article  MATH  Google Scholar 

  17. Esmailzadeh, E., Jazar, G.N.: Periodic behaviour of a cantilever beam with end mass subjected to harmonic base excitation. Int. J. Non-Linear Mech. 33, 567–577 (1998)

    Article  MATH  Google Scholar 

  18. Forehand, D.I.M., Cartmell, M.P.: On the derivation of the equations of motion for a parametrically excited cantilever beam. J. Sound Vib. 245, 165–177 (2001)

    Article  Google Scholar 

  19. Zavodney, L.D., Nayfah, A.H.: The nonlinear response of a slender beam carrying lumped mass to a principal parametric excitation: Theory and experiment. Int. J. Non-Linear Mech. 24, 105–125 (1989)

    Article  MATH  Google Scholar 

  20. Pai, P.F., Nayfeh, A.H.: Non-linear non-planar oscillations of a cantilever beam under lateral base excitations. Int. J. Non-Linear Mech. 25, 455–474 (1990)

    Article  MathSciNet  Google Scholar 

  21. Dwivedy, S.K., Kar, R.C.: Nonlinear response of a parametrically excited system using higher order method of multiple scales. Nonlinear Dyn. 20, 115–130 (1999)

    Article  MATH  Google Scholar 

  22. Lee, H.P.: Stability of a cantilever beam with tip mass subjected to axial sinusoidal excitations. J. Sound Vib. 183, 91–98 (1995)

    Article  MATH  Google Scholar 

  23. Cuvalci, O.: The effect of detuning parameters on the absorption region for a coupled system: a numerical and experimental study. J. Sound Vib. 229, 837–857 (2000)

    Article  Google Scholar 

  24. Pratiher, B., Dwivedy, S.K.: Nonlinear dynamic of a flexible single-link Cartesian manipulator. Int. J. Non-Linear Mech. 42, 1062–1073 (2207)

    Article  Google Scholar 

  25. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  26. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics—Analytical, Computational and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  27. Nayfeh, A.H.: Method of Normal Forms. Wiley-Interscience, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosha Kumar Dwivedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratiher, B., Dwivedy, S.K. Nonlinear response of a flexible Cartesian manipulator with payload and pulsating axial force. Nonlinear Dyn 57, 177–195 (2009). https://doi.org/10.1007/s11071-008-9431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9431-6

Keywords

Navigation