Skip to main content

Advertisement

Log in

An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study examined landslide susceptibility, an increasingly common problem in mountainous regions across the world as a result of urbanization, deforestation, and various natural processes. The Rangit River watershed in Sikkim Himalaya is one of the most landslide-prone areas in India. The main objective of this study was to produce landslide susceptibility maps of the Rangit River watershed using novel ensembles of random forest tree (RFT) with support vector machine (RFT-SVM), artificial neural network (RFT-ANN), naïve Bayes tree (RFT-NBT), and logistic model tree (RFT-LMT). An inventory of landslides was created using historical landslide data, government and scientific studies, and Google Earth’s high-resolution satellite images. The landslide/non-landslide locations were split 70/30 for training and validating the models, respectively. Eleven landslide conditioning factors were selected based on their predictive ability, determined using the information gain method, and each factor’s importance was derived. A landslide susceptibility index was then estimated by weighted overlay using a model builder in a GIS (Geographic Information System) environment. Based on the area under the curve and statistical metrics, RFT-LMT was identified as the best model. The results showed that approximately 40% of the Rangit River watershed has high to very high susceptibility to landslides. This study’s findings will be useful for policy-makers and land use planners in managing and mitigating future landslides in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu El-Magd SA, Ali SA, Pham QB (2021a) Spatial modeling and susceptibility zonation of landslides using random forest, naïve bayes and K-nearest neighbor in a complicated terrain. Earth Sci Inf 14(3):1227–1243

    Article  Google Scholar 

  • Abu El-Magd SA, Orabi HO, Ali SA, Parvin F, Pham QB (2021b) An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environ Earth Sci 80:694. https://doi.org/10.1007/s12665-021-10013-0

    Article  Google Scholar 

  • Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? GSF 11:871–883. https://doi.org/10.1016/j.gsf.2019.10.001

    Article  Google Scholar 

  • Achu AL, Aju CD, Reghunath R (2020) Spatial modelling of shallow landslide susceptibility: a study from the southern Western Ghats region of Kerala. India Ann GIS 26(2):113–131. https://doi.org/10.1080/19475683.2020.1758207

    Article  Google Scholar 

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir. Turkey Landslides 9(1):93–106

    Article  Google Scholar 

  • Akgun A, Türk N (2010) Landslide susceptibility mapping for Ayvalik (western Turkey) and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):595–611. https://doi.org/10.1007/s12665-009-0373-1

    Article  Google Scholar 

  • Ali SA, Ahmad A (2019) Forecasting MSW generation using artificial neural network time series model: a study from metropolitan city. SN Appl Sci 1(11):1338

    Article  Google Scholar 

  • Ali SA, Khatun R, Ahmad A, Ahmad SN (2019) Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Model Earth Syst Environ 5(3):1083–1102

    Article  Google Scholar 

  • Ali SA, Khatun R, Ahmad A, Ahmad SN (2020a) Assessment of cyclone vulnerability, hazard evaluation and mitigation capacity for analyzing cyclone risk using GIS technique: a study on Sundarban biosphere reserve, India. Earth Syst Environ 4(1):71–92

    Article  Google Scholar 

  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA (2020b) GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topľa basin. Slovakia Ecol Indic 115:106620. https://doi.org/10.1016/j.ecolind.2020.106620

    Article  Google Scholar 

  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA (2021) GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. GSF 12:857–876. https://doi.org/10.1016/j.gsf.2020.09.004

    Article  Google Scholar 

  • Al-Najjar HH, Pradhan B (2021) Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front 12(2):625–637

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci 44:120–135

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA 114:21–36. https://doi.org/10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenviron Disaster. https://doi.org/10.1186/s40677-014-0009-y

    Article  Google Scholar 

  • Arabameri A, Pradhan B, Rezaei K, Sohrabi M, Kalantari Z (2019) GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J Mt Sci 16:595–618

    Article  Google Scholar 

  • Arabameri A, Chandra Pal S, Costache R, Saha A, Rezaie F, Seyed Danesh A et al (2021) Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomat Nat Haz Risk 12(1):469–498

    Article  Google Scholar 

  • Avinash KG, Ashamanjari KG (2010) A GIS and frequency ratio based landslide susceptibility mapping: Aghnashini river catchment, Uttara Kannada, India. Int J Geomat Geosci 1(3):343–354

    Google Scholar 

  • Bloom AL (2004) Geomorphology–a systematic analysis of Late Cenozoic landforms: Long Grove, Illinois

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brown, MK (2012) Landslide detection and susceptibility mapping using Lidar and artificial neural network modeling: A Case study in Glacially dominated Cuyahoga River Valley, Ohio; Bowling Green State University: Bowling Green, OH, USA

  • Budhi GS, Chiong R, Pranata I, Hu Z (2021) Using machine learning to predict the sentiment of online reviews: a new framework for comparative analysis. Arch Comput Methods Eng 28(4):2543–2566

    Article  Google Scholar 

  • Bueechi E, Klimeš J, Frey H, Huggel C, Strozzi T, Cochachin A (2019) Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches. Landslides 16(2):395–407. https://doi.org/10.1007/s10346-018-1090-1

    Article  Google Scholar 

  • Bui DT, Ho T-C, Pradhan B, Pham B-T, Nhu V-H, Revhaug I (2016) Gis-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with adaboost, bagging, and multiboost ensemble frameworks. Environ Earth Sci 75:1101

    Article  Google Scholar 

  • Cao J, Zhang Z, Du J, Zhang L, Song Y, Sun G (2020) Multi-geohazards susceptibility mapping based on machine learning - a case study in Jiuzhaigou, China. Nat Hazards. https://doi.org/10.1007/s11069-020-03927-8

    Article  Google Scholar 

  • Carrying capacity study of Teesta basin in Sikkim (2006a) Introductory volume, Ministry of Environment & Forest, Government of India Vol-I. Assessed from http://www.actsikkim.com/docs/CCS_I_Introductory_Volume.pdf

  • Carrying capacity study of Teesta basin in Sikkim (2006b) Introductory volume, Ministry of Environment & Forest, Government of India Vol-II. Assessed from http://sikenvis.nic.in/writereaddata/Vol-II_Land%20Environment.pdf

  • Chen X, Chen W (2021) GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 196:104833

    Article  Google Scholar 

  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J (2017a) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160

    Article  Google Scholar 

  • Chen W, Pourghasemi HR, Zhao Z (2017b) AGIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Int 32:367–385

    Article  Google Scholar 

  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z (2018a) Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province. China Sci Total Environ 626:1121–1135

    Article  Google Scholar 

  • Chen W, Zhang S, Li R, Shahabi H (2018b) Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ 644:1006–1018

    Article  Google Scholar 

  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, Ahmad BB (2020) Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979. https://doi.org/10.1016/j.scitotenv.2019.134979

    Article  Google Scholar 

  • Cherukuri H, Perez-Bernabeu E, Selles M, Schmitz T (2019) Machining chatter prediction using a data learning model. J Manuf Mater Process 3:45. https://doi.org/10.3390/jmmp3020045

    Article  Google Scholar 

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Costache R (2019) Flash-flood potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Sci Total Environ 659:1115–1134. https://doi.org/10.1016/j.scitotenv.2018.12.397

    Article  Google Scholar 

  • Costache R, Hong H, Bao Pham Q (2019) Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134514

    Article  Google Scholar 

  • Costache R, Pham QB, Sharifi E, Linh NTT, Abba S, Vojtek M, Vojtekova J, Nhi PTT, Khoi DN (2020) Flash-flood susceptibility assessment using multicriteria decision making and machine learning supported by remote sensing and GIS techniques. Rem Sens 12:106

    Article  Google Scholar 

  • Costache R, Ali SA, Parvin F, Pham QB, Arabameri A, Nguyen H, Crăciun A, Anh DT (2021) Detection of areas prone to flood-induced landslides risk using certainty factor and its hybridization with FAHP, XGBoost, and deep learning neural network. Geocarto Int. https://doi.org/10.1080/10106049.2021.1973115

    Article  Google Scholar 

  • Dang V-H, Hoang N-D, Nguyen L-M-D, Bui DT, Samui P (2020) A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests 11(1):118. https://doi.org/10.3390/f11010118

    Article  Google Scholar 

  • Das S, Raja DR (2015). Susceptibility Analysis of Landslide in Chittagong City Corporation Area. In: 1st International electronics conference on Remote sensing 1–31

  • Demir G (2016) Landslide susceptibility assessment of the part of the North Anatolian Fault Zone (Turkey) by GIS-based frequency ratio and index of entropy models. Nat Hazard Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2016-327

  • Deo RC, Kisi O, Singh VP (2017) Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos Res 184:149–175

    Article  Google Scholar 

  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 17(8):1897–1914

    Article  Google Scholar 

  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM (2020) Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci 10:2466. https://doi.org/10.3390/app10072466

    Article  Google Scholar 

  • Ding Q, Chen W, Hong H (2017) Application of Frequency Ratio, Weights of Evidence and Evidential Belief Function Models in Landslide Susceptibility Mapping. Geocarto Int 32(6):619–639

    Google Scholar 

  • Ding Z, Zhang Z, Li Y, Zhang L, Zhang K (2020) Characteristics of magnetic susceptibility on cropland and pastureland slopes in an area influenced by both wind and water erosion and implications for soil redistribution patterns. Soil Tillage Res 199:104568

    Article  Google Scholar 

  • Doetsch P, Buck C, Golik P, Hoppe N, Kramp M, Laudenberg J, et al (2009) Logistic model trees with auc split criterion for the kdd cup 2009 small challenge. In: KDD-Cup 2009 Competition, pp 77–88

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Khosravi K, Yang Y, Pham BT (2019) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island. Japan Sci Total Environ 662:332–346

    Article  Google Scholar 

  • Dubey CS, Chaudhry M, Sharma BK, Pandey AC, Singh B (2005) Visualization of 3-D digital elevation model for landslide assessment and prediction in mountainous terrain: a case study of Chandmari landslide Sikkim, eastern Himalayas. Geosci J 9(4):363–373

    Article  Google Scholar 

  • Fang Z, Wang Y, Peng L, Hong H (2020) A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int J Geogr Inf Sci. https://doi.org/10.1080/13658816.2020.1808897

    Article  Google Scholar 

  • Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41(4):1937–1946

    Article  Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    Article  Google Scholar 

  • Ghimire M (2001) Geo-hydrological hazard and risk zonation of Banganga watershed using GIS and remote sensing. J Nepal Geol Soc 23:99–110

    Google Scholar 

  • Ghorbanzadeh O, Valizadeh Kamran K, Blaschke T, Aryal J, Naboureh A, Einali J et al (2019) Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches. Fire, 2(3), 43. Retrieved from https://www.mdpi.com/2571-6255/2/3/43

  • Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T (2020) Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster shafer theory. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125275

    Article  Google Scholar 

  • Hassangavyar MB, Damaneh HE, Pham QB, Linh NTT, Tiefenbacher J, Bach QV (2020) Evaluation of re-sampling methods on performance of machine learning models to predict landslide susceptibility. Geocarto Int. https://doi.org/10.1080/10106049.2020.1837257

    Article  Google Scholar 

  • Hoang N-D, Nguyen Q-L, Bui DT (2018) Image processing-based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony. J Comput Civ Eng 32:04018037

    Article  Google Scholar 

  • Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County (china): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259:105–118. https://doi.org/10.1016/j.geomorph.2016.02.012

    Article  Google Scholar 

  • Hong H, Liu J, Zhu AX, Shahabi H, Pham BT, Chen W, Pradhan B, Bui DT (2017) A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environ Earth Sci 76:689

    Article  Google Scholar 

  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu A-X, Chen W, Ahmad BB (2018) Landslide susceptibility mapping using J48 decision tree with ADAboost, bagging and rotation forest ensembles in the Guangchang area (China). CATENA 163:399–413

    Article  Google Scholar 

  • Hong H, Xu C, Revhaug I, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China): a comparative study on the predictive ability of backpropagation multi-layer perceptron neural networks and radial basic function neural networks. In: Cartography-Maps Connecting the World. Springer 175–188

  • Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529

    Article  Google Scholar 

  • Jaafari A, Najafi A, Pourghasemi HR (2014) GIS-based frequency ratio and index of entropy modelsfor landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-013-0464-0

    Article  Google Scholar 

  • Jhoo Ohh H, Lee S (2017) Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree. Appl Sci. https://doi.org/10.3390/app7101000

    Article  Google Scholar 

  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Hazards Risk 2018(9):49–69

    Article  Google Scholar 

  • Karegowda AG, Manjunath A, Jayaram M (2010) Comparative study of attribute selection using gain ratio and correlation based feature selection. Int J Inf Technol Knowl Manag 2:271–277

    Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2015) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76(1):471–496

    Article  Google Scholar 

  • Kavzoglu T, Colkesen I, Sahin EK (2018) Machine learning techniques in landslide susceptibility mapping: a survey and a case study. Adv Nat Technol Hazards Res. https://doi.org/10.1007/978-3-319-77377-3_13

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Kim HG, Lee DK, Park C, Ahn Y, Kil SH, Sung S, Biging GS (2018a) Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch Env Res Risk Assess 32(11):2987–3019. https://doi.org/10.1007/s00477-018-1609-y

    Article  Google Scholar 

  • Kim J-C, Lee S, Jung H-S, Lee S (2018b) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang. Korea Geocarto Int 33:1000–1015

    Article  Google Scholar 

  • Kumar R, Anbalagan R (2016) Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India 87:1–16. https://doi.org/10.1007/s12594-016-0395-8

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island. Malaysia J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Luo X, Lin F, Chen Y, Zhu S, Xu Z, Huo Z et al (2019) Coupling logistic model tree and random subspace to predict the landslide susceptibility areas with considering the uncertainty of environmental features. Sci Rep. https://doi.org/10.1038/s41598-019-51941-z

    Article  Google Scholar 

  • Mani S, Saranaathan SE (2016) Hydrological parameters controls Vulnerable Zones in Calicut– Nilambur-Gudalur Ghat section, Gudalur, The Nilgiris Tamil Nadu. Int J Chemtech Res 9(3):248–253

    Google Scholar 

  • McGuire B (2006) Global catastrophes: a very short introduction. OUP Oxford

  • Mohammadi A, Shahabi H, Bin Ahmad B (2019) Land-cover change detection in a part of Cameron highlands, Malaysia using ETM+ satellite imagery and support vector machine (SVM) algorithm. Environmentasia 12(2)

  • Monsieurs E, Jacobs L, Michellier C, Tchangaboba JB, Ganza GB, Kervyn F, Mateso J-CM, Bibentyo TM, Buzera CK, Nahimana L (2018) Landslide inventory for hazard assessment in a data-poor context: a regional-scale approach in a tropical African environment. Landslides. https://doi.org/10.1007/s10346-018-1008-y

    Article  Google Scholar 

  • Moosavi V, Niazi Y (2016) Development of Hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides 13(1):97–114. https://doi.org/10.1007/s10346-014-0547-0

    Article  Google Scholar 

  • Murty CVR, Raghukanth STG, Menon A, Goswami R, Vijayanarayanan AR, Gandhi SR et al (2012) The Mw 6.9 Sikkim-Nepal Border Earthquake of September 18, 2011. EERI Newsletter, EERI Special Earthquake Report 1–14

  • Ngo P-T, Hoang N-D, Pradhan B, Nguyen Q, Tran X, Nguyen V, Samui P, Tien Bui D (2018) A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using Sentinel-1 SAR imagery and geospatial data. Sensors 18:3704

    Article  Google Scholar 

  • Nguyen VT, Tran TH, Ha NA, Ngo VL, Nadhir AA, Tran VP et al (2019) GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: a case study at da lat city Vietnam. Sustainability 11(24):7118

    Article  Google Scholar 

  • Nhu V-H, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, Clague JJ, Jaafari A, Chen W, Nguyen H (2020a) Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. Int J Environ Res Public Health 17(14):4933. https://doi.org/10.3390/ijerph17144933

    Article  Google Scholar 

  • Nhu VH, Zandi D, Shahabi H, Chapi K, Shirzadi A, Al-Ansari N et al (2020b) Comparison of support vector machine, Bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of Iran. Appl Sci 10(15):5047

    Article  Google Scholar 

  • Nhu VH, Shirzadi A, Shahabi H, Chen W, Clague JJ, Geertsema M et al (2020c) Shallow landslide susceptibility mapping by random forest base classifier and its ensembles in a semi-arid region of Iran. Forests 11(4):421

    Article  Google Scholar 

  • Nithya R, Santhi B (2015) Decision tree classifiers for mass classification. Int J Signal Imaging Syst Eng 8(1/2):39–45

    Article  Google Scholar 

  • Nsengiyumva JB, Luo G, Nahayo L, Huang X, Cai P (2018) Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda. Int J Environ Res Public Health 15(2):243

    Article  Google Scholar 

  • Nsengiyumva JB, Luo G, Amanambu AC, Mind’je R, Habiyaremye G, Karamage F, Ochege FU, Mupenzi C (2019) Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci Total Environ 659:1457–1472

    Article  Google Scholar 

  • Nsengiyumva JB (2012). Disaster high risk zones on floods and landslides. MIDIMAR, Kigali

  • Parizi E, Bagheri-Gavkosh M, Hosseini SM, Geravand F (2021) Linkage of geographically weighted regression with spatial cluster analyses for regionalization of flood peak discharges drivers: case studies across Iran. J Clean Prod 310:127526

    Article  Google Scholar 

  • Park S, Kim J (2019) Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci 9:942

    Article  Google Scholar 

  • Pham BT, Bui DT, Indra P, Dholakia MB (2015) Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS-based statistical approach of frequency ratio method. Int J Eng Res Technol 4(11):338–344

    Google Scholar 

  • Pham BT, Bui DT, Prakash I, Dholakia MB (2016) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards 83(1):97–127. https://doi.org/10.1007/s11069-016-2304-2

    Article  Google Scholar 

  • Pham BT, Bui DT, Prakash I (2017) Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotech Geol Eng 35(6):2597–2611

    Article  Google Scholar 

  • Pham BT, Shirzadi A, Shahabi H, Omidvar E, Singh SK, Sahana M, Asl DT, Ahmad BB, Quoc NK, Lee S (2019) Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability 11:4386. https://doi.org/10.3390/su11164386

    Article  Google Scholar 

  • Pham BT, Phong TV, Nguyen-Thoi T, Parial K, Singh SK, Ly HB et al (2020) Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto Int. https://doi.org/10.1080/10106049.2020.1737972

    Article  Google Scholar 

  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, Anh DT (2021) A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat Nat Haz Risk 12(1):1741–1777

    Article  Google Scholar 

  • Pradhan B (2011) An assessment of the use of an advanced neural network model with five different training strategies for the preparation of landslide susceptibility maps. Data Sci J 9:65–81

    Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput and Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759. https://doi.org/10.1016/j.envsoft.2009.10.016

    Article  Google Scholar 

  • Pradhan B, Mansor S, Lee S, Buchroithner MF (2008) Application of a data mining model for landslide hazard mapping. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B8):187–196

    Google Scholar 

  • Rabby YW, Yingkui L (2020) Landslide susceptibility mapping using integrated methods: a case study in the Chittagong Hilly areas, Bangladesh. Geosciences 10(12):483. https://doi.org/10.3390/geosciences10120483

    Article  Google Scholar 

  • Rathore SS, Kumar S (2021) An empirical study of ensemble techniques for software fault prediction. Appl Intell 51(6):3615–3644

    Article  Google Scholar 

  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742

    Article  Google Scholar 

  • Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus. Greece Environ Earth Sci 63:49–63

    Article  Google Scholar 

  • Sachdeva S, Bhatia T, Verma AK (2020) A novel voting ensemble model for spatial prediction of landslides using GIS. Int J Remote Sens 41(3):929–952. https://doi.org/10.1080/01431161.2019.1654141

    Article  Google Scholar 

  • Sahana M, Pham BT, Shukla M, Costache R, Thu DX, Chakrabortty R, Satyam N, Nguyen HD, Phong TV, Le HV, Pal SC (2020) Rainfall induced landslide susceptibility mapping using novel hybrid soft computing methods based on multi-layer perceptron neural network classifier. Geocarto Int. https://doi.org/10.1080/10106049.2020.1837262

    Article  Google Scholar 

  • Samy IE, Morghany MM, Mohamed MM (2014) Landslide modeling and analysis using remote sensing and GIS: a case study of Cameron highland. Malayasis J Geomat 8(2):140–147

    Google Scholar 

  • Sangchini EK, Nowjavan MR, Arami A (2015) Landslide susceptibility mapping using logistic statistical regression in Babaheydar Watershed Chaharmahal Va Bakhtiari Province Iran. J Fac For Istanbul U 65(1):30–40

    Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, Kumar P (2006) GIS based landslide susceptibility mapping-a case study in Indian Himalaya. Universal Academy Press, Inc./Tokyo Japan 617–624

  • Selby MJ (2005) Earth’s changing surface: an introduction to geomorphology. Oxford University Press, New Delhi

    Google Scholar 

  • Shanthi S, Elangovan K (2017) Comparison of landslide susceptibility analysis using AHP, SMCE and GIS for Nilgiri districts, India. Indian J Mar Sci 46(04):802–814

    Google Scholar 

  • Sharpe CFS (1938) Landslide and related phenomena: a study of mass movement of soil and mantle rock. J Geol 46:7

    Google Scholar 

  • Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H et al (2018) Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 18(11):3777. https://doi.org/10.3390/s18113777

    Article  Google Scholar 

  • Singh RP, Dubey CS, Singh SK, Shukla DP, Mishra BK, Tajbakhsh M, Ningthouja PS, Sharma M, Singh N (2012) A new slope mass rating in mountainous terrain, Jammu and Kashmir Himalayas: application of geophysical technique in slope stability studies. Landslides. https://doi.org/10.1007/s10346-012-0323-y

    Article  Google Scholar 

  • Srimani PK, Koti MS (2013) Medical diagnosis using ensemble classifiers: a novel machine-leaning approach. Int J Adv Comput Sci Appl 1:9–27

    Google Scholar 

  • Tazik E, Jahantab Z, Bakhtiari M, Rezaei A, Alavipanah SK (2014) Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin. Int Arch Photogramm Remote Sens Spatial Inf Sci. https://doi.org/10.5194/isprsarchives-XL-2-W3-267-2014

  • Thornbury WD (1969) Principles of geomorphology. Wiley Eastern limited

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vectormachines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378

    Article  Google Scholar 

  • Tien Bui D, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT (2019) Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188:104426

    Google Scholar 

  • Torkashvand AM, Irani A, Sorur J (2014) The preparation of landslide map by landslide numerical risk factor (LNRF) modeland geographic information system (GIS). Egypt J Remote Sens Space Sci 17:159–170

    Google Scholar 

  • Tseng CM, Lin CW, Hsieh WD (2015) Landslide susceptibility analysis by means of event-based multi-temporal landslide inventories. Nat Hazards Earth Syst Sci 3:1137–1173. https://doi.org/10.5194/nhessd-3-1137-2015

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Vol 3.UNESCO, Natural Hazard Series

  • Walde S, Kale K, Kundu S, Nagaraj P, Shelar T, ShuklaVK (2017) GIS based landslide susceptibility assessment of malin area: A case study in watershed, India. In: 17th ESRI Conference, India

  • Wang S, Jiang L, Li C (2015) Adapting naive Bayes tree for text classification. Knowl Inf Syst 44(1):77–89

    Article  Google Scholar 

  • Xiao T, Yin K, Yao T, Liu S (2019) Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochim. https://doi.org/10.1007/s11631-019-00341-1

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72:1–12

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility Mapping in Trabzon, NE Turkey. CATENA 85:274–287

    Article  Google Scholar 

  • Yang D, Gueymard CA (2020) Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance. Sol Energy 208:591–603

    Article  Google Scholar 

  • Yi Y, Zhang Z, Zhang W, Jia H, Zhang J (2020) Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. CATENA 195:104851

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Tran Anh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.A., Parvin, F., Pham, Q.B. et al. An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India. Nat Hazards 113, 1601–1633 (2022). https://doi.org/10.1007/s11069-022-05360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05360-5

Keywords

Navigation