Skip to main content

Advertisement

Log in

Identification of droughts over Saudi Arabia and global teleconnections

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Drought is known as one of the most devastating climate extremes, which the world is facing in recent decades. The Kingdom of Saudi Arabia (KSA) lies in the water-stressed region, with high rainfall inter-annual variability, and is highly vulnerable to recurring droughts. In this study, six different drought indices, i.e., Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), Deciles Index, Percentage Departure and two relatively new drought indices (aSPI and eRDI), based on effective rainfall are calculated, to determine the consensus drought years between 1985 and 2020. Based on these indices eight drought years (1990, 2003, 2007, 2008, 2009, 2011, 2012 and 2017) are identified, with 2007 as the extreme drought year, and the longest episode of drought (moderate to extreme intensity) was experienced during 2007–2012 (except 2010) over the region, where almost 70% of the KSA total area was under drought. Empirical Orthogonal Function analysis is performed on the SPI drought index for studying the inter-annual variability of drought over KSA. A robust relationship is found between droughts and the Pacific Decadal Oscillation (PDO), indicating some predictability of droughts over KSA. This study provides an overview for drought managers and disasters agencies to develop a contingency plan for climate-smart agriculture and water management toward sustainable development over the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Available on request.

References

  • Abid A, Almazroui M, Kucharski F, O’Brien E, Yousef AE (2018) ENSO relationship to summer rainfall variability and its potential predictability over Arabian Peninsula region. NPJ Clim Atmos Sci 1:1–7

    Article  Google Scholar 

  • Adnan S, Khan AH (2009) Effective rainfall for irrigated agriculture plains of Pakistan. Pakistan J Meteorol 6:61–72

    Google Scholar 

  • Adnan S, Mahmood R, Khan AH (2009) Water balance conditions in rainfed areas of potohar and balochistan plateau during 1931–08. World Appl Sci J 7:162–169

    Google Scholar 

  • Adnan S, Ullah K, Gao S (2015) Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010. J Meteorol Res 29:837–857. https://doi.org/10.1007/s13351-015-4113-z

    Article  Google Scholar 

  • Adnan S, Ullah K, Shuanglin L, Gao S, Khan AH, Mahmood R (2018) Comparison of various drought indices to monitor drought status in Pakistan. Clim Dyn 51:1885–1899. https://doi.org/10.1007/s00382-017-3987-0

    Article  Google Scholar 

  • Al Ameri ID, Briant RM, Engels S (2019) Drought severity and increased dust storm frequency in the Middle East: a case study from the Tigris-Euphrates alluvial plain, central Iraq. Weather 74:416–426

    Article  Google Scholar 

  • Al Senafi F, Anis A (2015) Shamals and climate variability in the Northern Arabian/Persian Gulf from 1973 to 2012. Int J Climatol 35: 4509–4528. https://doi.org/10.1002/joc.4302.

  • Al-Dalabeeh F, Imreizeeq E, Al-Naqbi H (2019) Long term analysis of the subtropical jet over the Arabian Peninsula. Int J Global Warm 17:170–184

    Article  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Al-Faraj FAM, Scholz M, Tigkas D, Bonic M (2015) Drought indices supporting drought management in transboundary watersheds subject to climate alterations. Water Policy 17:865–886. https://doi.org/10.2166/wp.2014.237

    Article  Google Scholar 

  • Algur KD, Patel SK, & Chauhan S (2021) The impact of drought on the health and livelihoods of women and children in India: a systematic review. Child Youth Serv Rev, 122(C).

  • Alkolibi FM (2002) Possible effects of global warming on agriculture and water resources in Saudi Arabia: impacts and responses. Clim Change 54:225–245

    Article  Google Scholar 

  • Almazroui M (2019) Assessment of meteorological droughts over Saudi Arabia using surface rainfall observations during the period 1978–2017. Arab J Geosci 12:1–16. https://doi.org/10.1007/s12517-019-4866-2

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S, Saeed F, Ismail M (2020) Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Syst Environ 4:611–630. https://doi.org/10.1007/s41748-020-00183-5

    Article  Google Scholar 

  • Amin M, Khan AA, Perveen A, Rauf Z, Hassan SS, Goheer MA, Ijaz M (2019) Drought risk assessment: a case study in Punjab, Pakistan. Sarhad J Agric 35:234–243. https://doi.org/10.17582/journal.sja/2019/35.1.234.243

    Article  Google Scholar 

  • Athar H (2015) Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. AtmosSci Lett 16:373–379. https://doi.org/10.1002/asl2.570

    Article  Google Scholar 

  • Atif RM, Almazroui M, Saeed S, Abid MA, Islam MN, Ismail M (2020) Extreme precipitation events over Saudi Arabia during the wet season and their associated teleconnections. Atmos Res 231:104655

    Article  Google Scholar 

  • Baig MB, Shahid SA, Straquadine GS (2013) Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: a review. Int Soil Water Conserv Res 1:36–52

    Article  Google Scholar 

  • Barlow M, Zaitchik B, Paz S, Black E, Evans J, Hoell A (2016) A review of drought in the Middle East and Southwest Asia. J Clim 29:8547–8574

    Article  Google Scholar 

  • Cao H, FarshadAmiraslani JL, Zhou Na (2015) Identification of dust storm source areas in West Asia using multiple environmental datasets. Sci Total Environ 502:224–235

    Article  Google Scholar 

  • Chakraborty A, Behera SK, Mujumdar M, Ohba R, Yamagata T (2006) Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon Wea Rev 134:598–617. https://doi.org/10.1175/MWR3085.1

    Article  Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In Halophytes for food security in dry lands; Elsevier: Amsterdam, The Netherlands, pp 111–123.

  • Christensen JH, and Coauthors (2013) Climate phenomena and their relevance for future regional climate change. ClimateChange 2013: The physical science basis, T. F. Stocker et al. Eds., Cambridge University Press 1217–1308.

  • Deser C, Phillips AC, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since. J Clim 17:3109–3124

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD, Almazroui M, Kolli RK, Boucherf D, Al-Mulla AY, Nour AY, Aly AA, Nada TA (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34:581–592. https://doi.org/10.1002/joc.3707

    Article  Google Scholar 

  • Edwards D, Mckee T (1997) Characteristics of 20th century drought in the United States at multiple time scales. Department of atmospheric science, Colorado State University. Climatology report 97–2. https://apps.dtic.mil/docs/citations/ADA325595

  • Fassouli VP, Karavitis CA, Tsesmelis DE, Alexandris SG (2021) Factual Drought Index (FDI): a composite index based on precipitation and evapotranspiration. Hydrol Sci J 66(11):1638–1652

    Article  Google Scholar 

  • Fatima S, & Khan MS (2018) Forecasting rainfall in potohar region of Pakistan in the perspective of drought. J Math 50(4).

  • Gibbs WJ, Maher JV (1967) Rainfall deciles as drought indicators. Bureau of Meteorology.bulletin no. 48

  • Gonzalez-Hidalgo JC, Lopez-Bustins JA, Štepánek P, Martin-Vide J, de Luis M (2009) Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the second-half of the twentieth century (1951–2000). Int J Climatol 29:1415–1429. https://doi.org/10.1002/joc.1780

    Article  Google Scholar 

  • Hameed M, Moradkhani H, Ahmadalipour A, Moftakhari H, Abbaszadeh P, Alipour AA (2019) Review of the 21st century challenges in the food-energy-water security in the middle East. Water 11:682

    Article  Google Scholar 

  • Hannachi A (2004) A primer for EOF analysis of climate data. Department of meteorology, university of reading: Reading, UK. http://www.o3d.org/eas-6490/lectures/EOFs/eofprimer.pdf.

  • Hasanean H, Almazroui M (2015) Rainfall: features and variations over Saudi Arabia, a review. Climate 3:578–626. https://doi.org/10.3390/cli3030578

    Article  Google Scholar 

  • Hassan WU, Nayak MA (2020) Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ Res Lett 16:014007

    Article  Google Scholar 

  • HoellBarlowM FC (2014) The regional forcing of Northern Hemisphere drought during recent warm tropicalwest Pacific Ocean La Niña events. Clim Dyn 42:3289–3311. https://doi.org/10.1007/s00382-013-1799-4

    Article  Google Scholar 

  • Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185. https://doi.org/10.1006/jare.1996.0099

    Article  Google Scholar 

  • Hussain MS, Lee S (2013) The regional and the seasonal variability of extreme precipitation trends in Pakistan. Asia-Pac J Atmos Sci 49:421–441. https://doi.org/10.1007/s13143-013-0039-5

    Article  Google Scholar 

  • IPCC, Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jalili S, Kirchner I, Livingstone DM, Morid S (2012) The influence of large-scale atmospheric circulation weather types on variations in the water level of Lake Urmia. Iran Int J Climatol 32:1990–1996

    Article  Google Scholar 

  • Kelley C, Ting M, Seager R, Kushnir Y (2012) The relative contributions of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Clim Dyn 38:2001–2015. https://doi.org/10.1007/s00382-011-1221-z

    Article  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39:L10701

    Google Scholar 

  • Lashkari H, Jafari M (2021) The role of spatial displacement of Arabian subtropical high pressure in the annual displacement of the ITCZ in East Africa. Theor Appl Climatol 143:1543–1555

    Article  Google Scholar 

  • Lashkari H, Mohammadi Z, Jafari M (2020) Investigation on dynamical structure and moisture sources of heavy precipitation in south and south-west of Iran. Arab J Geosci 13:1140

    Article  Google Scholar 

  • Lelieveld J et al (2016) Strongly increasing heat extremes in the Middle East and NorthAfrica (MENA) in the 21st century. Clim Change 137:245–260

    Article  Google Scholar 

  • Li S, Wu L, Yang Y, Gan B, Chen Z, Jing Z, Wang G, Ma X (2020) The pacific decadal oscillation less predictable under greenhouse warming. Nat Clim Chang 10:30–34. https://doi.org/10.1038/s41558-019-0663-x

    Article  Google Scholar 

  • Loukas A, Vasiliades L, Tzabiras J (2008) Climate change effects on drought severity. Adv Geosci https://doi.org/10.5194/adgeo-17-23-2008

    Article  Google Scholar 

  • Lotsch A, Friedl MA, Anderson BT, Tucker CJ (2005) Response of terrestrial ecosystems to recent Northern Hemispheric drought. Geophys Res Lett 32.

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1080

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic ocean influences on multi-decadal drought frequency in the United States. Proc Natl Acad Sci USA 101:4136–4141. https://doi.org/10.1073/pnas.0306738101

    Article  Google Scholar 

  • McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology 17: 179–183.

  • Mendicino G, Senatore A, Versace P (2008) A groundwater resource index (GRI) for drought monitoring and forecasting in a mediterranean climate. J Hydrol 357:282–302. https://doi.org/10.1016/j.jhydrol.2008.05.005

    Article  Google Scholar 

  • Miller AJ, Schneider N (2000) Interdecadal climate regime dynamics in the North Pacific ocean: theories, observations and ecosystem impacts. Prog Oceanogr 47:355–379

    Article  Google Scholar 

  • Mishra AK, Singh VP (2011) Drought modelling–a review. J Hydrol 403:157–175. https://doi.org/10.1016/j.jhydrol.2011.03.049

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophysical research letters 30. New Jersey: John Wiley & Sons. pp.1–4

  • Neenu S, Biswas AK, Rao AS (2013) Impact of climatic factors on crop production-a review. Agric Rev 34:97–106

    Google Scholar 

  • Newman M et al (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427

    Article  Google Scholar 

  • Niranjan K, Ouarda TBMJ (2014) Precipitation variability over UAE and global SST teleconnections. J Geophys Res Atmos 119:10–313. https://doi.org/10.1002/2014JD021724

    Article  Google Scholar 

  • Notaro M, Yu Y, Kalashnikova OV (2015) Regime shift in Arabian dust activity, triggered by persistent fertile crescent drought. J Geophys Res Atmos 120:10229–10249

    Article  Google Scholar 

  • Olagunju TE (2015) Drought, desertification and the Nigerian environment: a review. J Ecol Nat Environ 7:196–209

    Article  Google Scholar 

  • Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21:156–161. https://doi.org/10.1080/00431672.1968.9932814

    Article  Google Scholar 

  • Pietzsch S, Bissolli P (2011) A modified drought index for WMO RA VI. Adv Sci Res 6:275–279. https://doi.org/10.5194/asr-6-275-2011

    Article  Google Scholar 

  • Qaiser G, Tariq S, Adnan S, Latif M (2021) Evaluation of a composite drought index to identify seasonal drought and its associated atmospheric dynamics in Northern Punjab Pakistan. J Arid Environ 185:104332

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Sabău NC, Man TE, Armaş A, Balaj C, Giru M (2015) Characterization of agricultural droughts using standardized precipitation index (SPI) and bhalme-mooley drought index (BDMI). Environ Eng Manage J 14:1441–1454. https://doi.org/10.30638/eemj.2015.156

    Article  Google Scholar 

  • Saeed S, Almazroui M (2019) Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. ClimDyn 53:5253–5264. https://doi.org/10.1007/s00382-019-04862-6

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat as 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Smakhtin VU, Schipper ELF (2008) Droughts: the impact of semantics and perceptions. Water Policy 10:131–143. https://doi.org/10.2166/wp.2008.036

    Article  Google Scholar 

  • Sowers J, Vengosh A, Weinthal E (2011) Climate change water resources and the politics of adaptation in the Middle East and North Africa. Clim Change 104(3-4):599–627. https://doi.org/10.1007/s10584-010-9835-4

    Article  Google Scholar 

  • Stamm GG (1967) Problems and procedures in determining water supply requirements for irrigation projects. Irrig Agric Lands 11:769–785

    Google Scholar 

  • Tabari H, Abghari H, Hosseinzadeh TP (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26:3351–3361

    Article  Google Scholar 

  • Tigkas D (2008) Drought characterisation and monitoring in regions of Greece. Euro Water 23:29–39

    Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inform 8:697–709

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2017) An enhanced effective reconnaissance drought index for the characterisation of agricultural drought. Environ Process 4:137–148. https://doi.org/10.1007/s40710-017-0219-x

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2019) Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor Appl Climatol 135:1435–1447

    Article  Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manage 21:821–833. https://doi.org/10.1007/s11269-006-9105-4

    Article  Google Scholar 

  • Ullah K, Shouting G (2013) A diagnostic study of convective environment leading to heavy rainfall during the summer monsoon 2010 over Pakistan. Atmos Res 120:226–239. https://doi.org/10.1016/j.atmosres.2012.08.021

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vogt JV, Niemeyer S, Somma F, Beaudin I, Viau AA (2000) Drought monitoring from space. In: Drought and drought mitigation in Europe. Springer, Dordrecht. 167–183. https://doi.org/10.1007/978-94-015-9472-1

  • Wilhite DA (2000) Drought preparedness in the United States: recent progress. Drought and drought mitigation in Europe. 119–31. https://doi.org/10.1007/978-94-015-9472-1_9

  • Zarei AR, Moghimi MM, Bahrami M (2019) Comparison of reconnaissance drought index (RDI) and effective reconnaissance drought index (eRDI) to evaluate drought severity. Sustain Water Resour Manage 5:1345–1356. https://doi.org/10.1007/s40899-019-00310-9

    Article  Google Scholar 

  • Zhang JM, Zhang XP, Li ZX, Zhang J, Xiao Y, Liu Y, Zhou W (2011) Spatial distribution and variation tendency of droughts and floods in Hunan province during the past 36 years. J Trop Meteorol 17:385–391. https://doi.org/10.3969/j.issn.1006-8775.2011.04.008

    Article  Google Scholar 

  • Zhang A, Zheng C, Wang S, Yao Y (2015a) Analysis of streamflow variations in the Heihe river basin, northwest China: trends, abrupt changes, driving factors and ecological influences. J Hydrol: Reg Stud 3:106–124. https://doi.org/10.1016/j.ejrh.2014.10.005

    Article  Google Scholar 

  • Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N, Rahimzadeh F, Taghipour A, Hantosh TH, Albert P (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res: Atmos https://doi.org/10.1029/2005JD006181

  • Zhang Q, Gu X, Singh VP, Kong D, Chen X (2015b) Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Global and Planetary Change 131: 63–72. https://doi.org/10.1016/j.gloplacha.2015b.05.007

Download references

Funding

No funds, grants or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made a substantial contribution to this research and have approved the final manuscript. F. S. Syed and S. Adnan contributed to conceptualization, design, writing, data analysis; A. Zamreeq contributed to concept and supervision. A. Ghulam contributed to data acquiring, writing and proofreading.

Corresponding author

Correspondence to F. S. Syed.

Ethics declarations

Conflicts of interest

The study was based on data available in the public domain; therefore, no ethical issue and conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, F.S., Adnan, S., Zamreeq, A. et al. Identification of droughts over Saudi Arabia and global teleconnections. Nat Hazards 112, 2717–2737 (2022). https://doi.org/10.1007/s11069-022-05285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05285-z

Keywords

Navigation