Skip to main content

Advertisement

Log in

Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Historically, during periods of extreme drought, food security in the drylands of the semiarid region of Northeast Brazil (NEB) is under severe risk due to agricultural collapse. The drought that started in 2012 continues to highlight the vulnerability of this region, and arid conditions have been detected during the last years mainly in the central semiarid region, covering almost 2% of the NEB. Climate projections show an increase in the area under water stress condition, covering 49% and 54% of the NEB region by 2700 and 2100, respectively, with a higher likelihood with warming above 4 °C. The projections of vegetative stress conditions derived from the empirical model for Vegetation Health Index (VHI) are consistent with projections from vegetation models, where semi-desert types typical of arid conditions would replace the current semiarid bushland vegetation (“caatinga”) by 2100. Due to the impacts of the 2012–2017 drought, public policies have been implemented to reduce social and economic vulnerability for small farmers but are not enough as poor population continues to be affected. In the long term, to make the semiarid less vulnerable to drought, strengthened integrated water resources management and a proactive drought policy are needed to restructure the economy. Integrating drought monitoring and seasonal climate forecasting provides means of assessing impacts of climate variability and change, leading to disaster risk reduction through early warning. Lastly, there is an urgent need for integrated assessments because the possibility that under permanent drought conditions with warming above 4 °C, arid conditions would prevail in NEB since 2060.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Vieira et al. (2016)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56

  • Alvalá RC et al (2017) Drought monitoring in the Brazilian semiarid region, in press, Annais da Academia Brasilieira de Ciencias do Brasil. http://dx.doi.org/10.1590/0001-3765201720170209

  • Araujo J (1982) Barragens no Nordeste do Brasil: Experiencia do DNOCS em Barragens na Regiao Semi-Arida. Departamento Nacional de Obras contra as Secas, Ministerio do Interior, p 15

  • Bäckstrand K et al (2017) Non-state actors in global climate governance: from Copenhagen to Paris and beyond. Environ Polit 26:561–579

    Article  Google Scholar 

  • Beck C, Grieser JRB (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Offenbach, DWD, Klimastatusbericht

  • Bedran-Martins AM, Lemos MC (2017) Politics of drought under Bolsa Família program in Northeast Brazil. World Dev Perspect 7/8:15–21. ISSN 2452-2929. https://doi.org/10.1016/j.wdp.2017.10.003

  • Bhuiyan C et al (2017) Analyzing the impact of thermal stress on vegetation health and agricultural drought—a case study from Gujarat, India. GISci Remote Sens 1–22

  • Bokusheva R, Kogan F, Vitkovskaya I et al (2016) Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agric For Meteorol 220:200–206. https://doi.org/10.1016/j.agrformet.2015.12.066

    Article  Google Scholar 

  • Bretan E, Engle NL (2017) Drought preparedness policies and climate change adaptation and resilience measures in Brazil: an institutional change assessment. In: Uitto J, Puri J, van den Berg R (eds) evaluating climate change action for sustainable development. Springer, Cham

    Google Scholar 

  • Brito SSB et al (2018) Frequency, duration and severity of drought in the Brazilian Semiarid. Int J Climatology 38(2):517–529

    Article  Google Scholar 

  • Cardoso J et al (2017) The Caatinga: understanding the challenges. In: Cardoso J, Leal I, Tabarelli M (ed) Caatinga: the largest tropical dry forest region in South America, 1st edn. Springer International Publishing, pp 3–19

  • Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1(3):379–393. doi: 10.1214/ss/1177013622. https://projecteuclid.org/euclid.ss/1177013622

  • CONAB (2017) Companhia Nacional de Abastecimento. Levantamento de Safras. http://www.conab.gov.br/conteudos.php?a=1253&t=2. Acessado em março de 2017

  • Cunha APMA, Alvalá RCS, Kubota PY, Vieira RMSP (2015a) Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmos Sci Lett 16:219–227. https://doi.org/10.1002/asl2.543

    Article  Google Scholar 

  • Cunha AP et al (2015b) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric For Meteorol 214–215:494–505

    Article  Google Scholar 

  • Cunha APMA, Zeri M, Deusdará Leal K, Costa L, Cuartas LA, Marengo JA, Tomasella J, Vieira RM, Barbosa AA, Cunningham C, Cal Garcia JV, Broedel E, Alvalá R, Ribeiro-Neto G (2019) Extreme drought events over Brazil from 2011 to 2019. Atmosphere 10:642–649

    Article  Google Scholar 

  • Dantas JC, da Silva RM, Santos CAG (2020) Drought impacts, social organization, and public policies in northeastern Brazil: a case study of the upper Paraíba River basin. Environ Monit Assess 192:317

    Article  Google Scholar 

  • De Nys E, Alvarez VV, Engle NL, Frazao C (2013) Climate change impacts on water resources management: adaptation challenges and opportunities in Northeast Brazil. Latin America and Caribbean Region Environment and Water Resources occasional paper series. Washington, DC: World Bank; July 1, 2013. http://documents.worldbank.org/curated/en/2013/07/18004488/climate-change-impacts-water-resources-management-adaptation-challenges-opportunities-northeast-brazil

  • Finan TJ, Nelson DR (2001) Making rain, making roads, making do: public and private adaptations to drought in Ceará, Northeast Brazil. Clim Res 19(2):97–108. https://doi.org/10.1016/j.wace.2013.12.001

    Article  Google Scholar 

  • FNE/BNB/(2018) Fundo Constitucional de Financiamento do Nordeste - Banco do Nordeste. https://www.bnb.gov.br/fne/. Accessed April 2018

  • Greve P, Seneviratne SI (2015) Assessment of future changes in water availability and aridity. Geophys Res Lett 42:5493–5499

    Article  Google Scholar 

  • Guan X, Ma J, Huang J, Huang R, Zhang L, Ma Z (2019) Impact of oceans on climate change in drylands. Sci China Earth Sci. https://doi.org/10.1007/s11430-018-9317-8

    Article  Google Scholar 

  • Gutiérrez APA, Engle NL, De Nys E et al (2014) Drought preparedness in Brazil. Weather Clim Extrem 95(3):95–106. https://doi.org/10.1016/j.wace.2013.12.001

    Article  Google Scholar 

  • GVces (2018) Análise Custo-Benefício de Medidas de Adaptação à Mudança do Clima na Bacia Hidrográfica dos Rios Piancó-Piranhas- Açu: Resumo do Projeto. Centro de Estudos em Sustentabilidade da Escola de Administração de Empresas de São Paulo da Fundação Getulio Vargas. São Paulo, 2018, 9 pp

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Hastenrath S (2012) Exploring the climate problems of Brazil’s Nordeste: a review. Clim Change 112:243–251

    Article  Google Scholar 

  • Hccengenharia (2018) Sistema de energia solar no Nordeste. http://hccengenharia.com.br/

  • Hope AP et al (2017) Forecasting global warming, chapter 2 in Paris climate agreement: beacon of hope, series: Springer climate, 99:51–114

  • Huang J, Li Y, Fu C et al (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55:719–778. https://doi.org/10.1002/2016RG000550

    Article  Google Scholar 

  • IBGE (2010) Atlas do Censo Demogrâfico (2010) Instituto Brasileiro de Geografia e Estatística; 2010. http://www.ibge.gov.br/home/estatistica/populacao/censo2010/default_atlas.shtm

  • IBGE (2013) Pesquisa nacional por amostra de domicílios: Segurança Alimentar. IBGE, Rio de Janeiro, p 2013

    Google Scholar 

  • Ibrahim YZ, Balzter H, Kaduk J, Tucker CJ (2015) Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens 7:5471–5494. https://doi.org/10.3390/rs70505471

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovern mental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp

  • IPCC (2014a) Central and South America. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change [Barros V R, Field C B, Dokken D J, Mastrandrea M D, Mach K J, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, and White L L (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1499–1566

  • IPCC (2014b) Summary for policymakers in climate change (2014) mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, eds. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, et al. (Cambridge, UK, and New York, NY, USA: Cambridge University Press), 130. https://doi.org/10.1017/cbo9781107415324

  • Kogan FN (2001) Operational space technology for global vegetation assessment. Bull Am Meteorol Soc 8(9):1942–1964

    Google Scholar 

  • Kogan FN (2002) World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans Am Geophys Union 83(48):562–563. https://doi.org/10.1029/2002eo000382

    Article  Google Scholar 

  • Kogan FN, Guo W (2017) Strong 2015–2016 El Niño and implication to global ecosystems from space data. Int J Remote Sens 38(1):161–178

    Article  Google Scholar 

  • Lapola DM et al (2009) Exploring the range of climate biome projections for tropical South America: the role of CO2 fertilization and seasonality. Glob Biogeochem Cycles 23(3):GB3003

    Article  Google Scholar 

  • Lindoso DP et al (2014) Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian semi-arid: a case study in Ceará. Clim Change 127:93–99

    Article  Google Scholar 

  • Liu J et al (2013) Response of NDVI dynamics to precipitation in the Beijing-Tianjin sandstorm source region. Int J Remote Sens 34:5331–5350

    Article  Google Scholar 

  • Magalhães AR (2016) Life and drought in Brazil. In: De Nys E, Engle NL, Rocha Magalhães A (eds) Drought in Brazil—proactive management and policy. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

  • Magalhães AR, Glantz MH (1992) Socioeconomic impacts of climate variations and policy responces in Brazil, United Nations Environment Program (UNEP), Secretariat for Planning and Coordination State of Ceara (SEPLAN), Esquel Brasil Foundation, 155 pp

  • Magalhaes AR, Martins ES (2011) Drought and drought policy in Brazil. In: Sivakumar MVK, Motha RP, Wilhite DA (eds) Towards a compendium on national drought policy. World Meteorological Organization (WMO), Geneva, pp 57–67

    Google Scholar 

  • Magalhaes A et al (1988) The effects of climate variations on agriculture in Northeast Brazil. In: Parry M, Carter T, Konijn N (eds) The impact of climate variations on agriculture, vol 2. Assessments in semiarid regions. Kluwer Academic Publishers, Amsterdam, pp 277–304

    Google Scholar 

  • Magrin GO et al (2014) Central and South America. In: Barros VR, Fields CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilic TE, Chatterjee M, Ebi KI, Estrada YO, Genova RC, Birma B, Kissel ES, Levy AN, Maccraken S, Mastrandrea PR, White LL (eds). Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 2014, pp 1499–1566

  • Marengo JA, Bernasconi MA (2015) Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Clim Change 129:103–115

    Article  Google Scholar 

  • Marengo JA, Torres RR, Alves LM (2017) Drought in Northeast Brazil—past, present, and future. Theor Appl Climatol 20:1–12. https://doi.org/10.1007/s00704-016-1840-8

    Article  Google Scholar 

  • Marengo JA, Alves LM, Alvala RCS et al (2018) Climatic characteristics of the 2010–2016 drought in the semiarid northeast Brazil region. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765201720170206

    Article  Google Scholar 

  • Marengo JA, Cunha AP, Soares WR, Torres RR, Alves LM, Brito SSB, Cuartas LA, Leal K, Ribeiro Neto G, Alvalá RCS, Magalhaes AR (2019) Increase risk of drought in the semiarid lands of Northeast Brazil due to regional warming above 4 °C, in climate change risks in Brazil, CA. Nobre, JA. Marengo WR Soares (Orgs), Springer, pp 181–200. https://doi.org/10.1007/978-3-319-92881-4

  • Martins ES et al (2015) Monitor de Secas do Nordeste, em busca de um novo paradigma para a gestão de secas. Série Água 10

  • Martins ES, et al. (2018) A Multimethod Attribution Analysis of the Prolongued Northeast Brazil Hydrometeorological Drought (2012-2016). Bulletin of the American Meteorological Society, S65-S69

  • Martins ES, Molejon Quintana C, Silva Dias MAF, Vieira RF, Biazeto B, Foratini GD, Martins ES (2016a) The technical and institutional case: the northeast drought monitor as the anchor and facilitator of collaboration, chapter 3 in drought in brazil: proactive management and policy. Engle N, De Nys E, Rocha Magalhaes A (eds) Boca Raton, F., Taylor & Francis, 2016.| Series: drought and water crises, pp 37–48

  • Martins ES, Vieira RF, Biazeto B, Molejon Quintana C (2016b) Northeast drought monitor: the process, chapter 11 in drought in Brazil: proactive management and policy. Engle N, De Nys E, Rocha Magalhaes A (eds) Boca Raton, FL: Taylor & Francis, series: drought and water crises, pp 143–166

  • McKee TB et al (1993) The relationship of drought frequency and duration to time scales. 8th Conference on applied climatology, Am Meteor Soc pp 179–184

  • McKee TB et al (1995). Drought monitoring with multiple time scales. 9th Conference on applied climatology, Am Meteor Soc (1995), pp 233–236

  • MDS (2017) Minisério do Desenvolvimento Social. Programa Cisternas. Boletim Informativo. http://mds.gov.br/caisan-mds/boletins/Boletim_Programa_Cisternas_maio_2017.pdf88

  • Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  Google Scholar 

  • MI (2014) Ministério da Integração Nacional. http://www.mi.gov.br/pt/c/document_library/get_file?uuid=8c33b1c6-010c-4e36-83ba-419ab082ad35&groupId=10157

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  Google Scholar 

  • Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observations, theory, and numerical experiments with a general circulation model. J Atmos Sci 38:2653–2675

    Article  Google Scholar 

  • Mukherjee T et al (2014) Drought monitoring of Chhattisgarh using different indices based on remote sensing data. In: Singh M, Singh RB, Hassan MI (eds) Climate change and biodiversity: proceedings of IGU Rohtak conference, vol 1. Springer, Tokyo, Japan, 2014, pp 85–101

  • New M et al (1999) Representing twentieth-century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856

    Article  Google Scholar 

  • Oyama MD, Nobre CA (2003) A new climate-vegetation equilibrium state for tropical South America. Geophys Res Lett 30(23):2199. https://doi.org/10.1029/2003GL018600

    Article  Google Scholar 

  • Rodrigues RR, McPhaden MJ (2014) Why did the 2011–2012 La Nina cause a severe drought in the Brazilian Northeast? Geophys Res Lett 41:1012–1018. https://doi.org/10.1002/2013GL058703

    Article  Google Scholar 

  • Rossato L et al (2017) Impact of soil moisture on crop yields over Brazilian semiarid. Front Environ Sci 5(73):1–16

    Google Scholar 

  • SAF/MDA (2017) Secretaria de Agricultura Familiar. http://www.mda.gov.br/sitemda/secretaria/saf-garantia/sobre-o-programa

  • Salazar LF et al (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34(9):L09708

    Article  Google Scholar 

  • Sampaio G, Nobre CA, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709. https://doi.org/10.1029/2007GL030612

    Article  Google Scholar 

  • Sivakumar MVK et al (2011) Agricultural drought indices Proc. WMO/UNISDR expert group meeting agricultural drought indices (2–4 June 2010, Murcia, Spain) Sivakumar MVK, Motha RP, Wilhite DA Wood DA (eds) (Geneva: World Meteorological Organization) p 219

  • Stagge JH et al (2015) Candidate distributions for climatological drought indices (SPI and SPEI). Int J Climatol 35(13):4027–4040

    Article  Google Scholar 

  • Sudene (2017a) Superintendência do Desenvolvimento do Nordeste. Delimitação do Semiárido. http://sudene.gov.br/planejamento-regional/delimitacao-do-semiarido

  • SUDENE (2017b) Northeast Brazil Development Agency; www.sudene.gov.br. Accessed 1 Dec 2019

  • SUDENE (2017c) Superintendência do Desenvolvimento do Nordeste. Energia Solar é alternativa para o crescimento econômico do NE. http://sudene.gov.br/noticias/63-regional. Accessed 1 Dec 2019

  • Sun L et al (2007) Climate variability and corn yields in semiarid Ceará, Brazil. J Appl Meteorol Climatol 46:226–240

    Article  Google Scholar 

  • Taddei R (2011) Watered-down democratization: modernization versus social participation in water management in Northeast Brazil. Agric Hum Values 28(1):109–121. https://doi.org/10.1007/s10460-010-9259-9

    Article  Google Scholar 

  • Tomasella J, Silva Pinto Vieira RM, Barbosa AA et al (2018) Desertification trends in the Northeast of Brazil over the period 2000–2016. Int J Appl Earth Obs Geoinformation 73:197–206. https://doi.org/10.1016/j.jag.2018.06.012

    Article  Google Scholar 

  • Ukkola AM, Pitman AJ, De Kauwe MG, Abramowitz G, Herger N, Evans JP, Decker M (2018) Evaluating CMIP5 model agreement for multiple drought metrics. J Hydrometeor 19:969–988

    Article  Google Scholar 

  • Van Vuuren DPP et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  Google Scholar 

  • Van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Vicente-Serrano SM et al (2009) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM et al (2013) The response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110(1):52–57

    Article  Google Scholar 

  • Vieira RMSP, Tomasella J, Alvalá RCS et al (2015) Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth Discuss 6:3227–3260. https://doi.org/10.5194/se-6-347-2015

    Article  Google Scholar 

  • Vieira RM et al (2016) Avaliação do impacto da desertificação no ambiente e na população do Semiárido brasileiro por meio de uma base de dados geográficos. Sustentabilidade em Debate - Brasília 7:52–68

    Article  Google Scholar 

  • Vieira RM, Tomasella J, Barbosa AA, Martins MA, Rodriguez DA, Rezende FS, Carrielo F, Santana MO (2020) Desertification risk assessment in Northeast Brazil: current trends and future scenarios. Land Degrad Dev. First published 25 May 2020 https://doi.org/10.1002/ldr.3681

  • Wang P et al (2001) Vegetation temperature condition index and its application for drought monitoring. In: Proceedings international geoscience and remote sensing symposium, Sydney, Australia, pp 141–143

  • Wang P et al (2004) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains, USA. Int J Remote Sens 25:61–72

    Article  Google Scholar 

  • Willmott C, Robeson S (1995) Climatologically aided interpolation (CAI) of terrestrial air temperature. Int J Climatol 15:221–229

    Article  Google Scholar 

  • World Bank (2013) Turn down the heat: climate extremes, regional impacts, and the case for resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. Washington, DC 20433

  • Zargar A et al (2011) A review of drought indices. Environ Rev 19:333–349

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Science and Technology for Climate Change Phase 1 under the Brazilian National Council for Scientific and Technological Development (CNPq) Grant 573797/2008-0 and the São Paulo Research Support Foundation (FAPESP) Grant 2008/57719-9; and Phase 2 under CNPq Grant 465501/2014-1, and FAPESP Grants 2014/50848-9 and 2015/50122-0; the National Coordination for High Level Education and Training (CAPES) Grant 16/2014, and the Deutsche Forschungsgemeinschaf Grant DFG-GRTK 1740/2.

Author information

Authors and Affiliations

Authors

Contributions

J.A.M and C.A.N. designed research; J.A.M., A.P.C., C.A.N, A.R.M., W.R.S, R.R.T., L.M.A., S.S.B., L.A.C, K.R.LD. and R.C.S.A., performed research; A.P.C, L.M.A., and G.R.N analyzed data; G. S, and F.A run the vegetation model for Northeast Brazil; J.A.M., A.P.C, A.R.M. and C.A.N wrote the paper.

Corresponding author

Correspondence to Jose A. Marengo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marengo, J.A., Cunha, A.P.M.A., Nobre, C.A. et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat Hazards 103, 2589–2611 (2020). https://doi.org/10.1007/s11069-020-04097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04097-3

Keywords

Navigation