Skip to main content

Advertisement

Log in

Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

A Correction to this article was published on 26 September 2019

This article has been updated

Abstract

Due to gradual sea level rise and changes in the climate system, coastal vulnerability to storm surge hazards is expected to increase in some areas. Studies regarding the effect of storm surge inundation on buildings and human lives, especially when it comes to relatively low-threat level events, have been few, however. In this research, storm surge load impact around coastal residential areas was quantitatively assessed, through fine-resolution numerical modelling. Meso- and street-scale simulation results for a storm surge event in Nemuro, Japan, were comprehensively validated against observations and field measurements, and the simulation results showed good accuracy for sea level, significant wave height and inundation area. A fine-resolution, street-scale coastal flood simulation was carried out with individual and grouped buildings, created with a building block model, and the results showed the significant role of buildings by realistically capturing inundation dynamics. Hydrodynamic results showed that coastal flood impact on buildings was insignificant (consistent with surveys). Lastly, the potential flood impact on people in the streets was investigated, using five human instability equations, where the most pessimistic results showed average values between 0.0 and 0.2 (max 0.6–0.7), and slightly below 0.4 for children and the elderly, respectively. These values indicated that threat levels during the Nemuro storm event were low, which corresponded with observations (no fatalities). This study framework could be applied wherever an accurate local storm surge threat estimate was required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 26 September 2019

    To: Street-scale storm.

References

  • Abt SR, Wittler RJ, Taylor A, Love DJ (1989) Human stability in a high flood hazard zone. J Am Water Resour As 25(4):881–890

    Article  Google Scholar 

  • Akoh R, Ishikawa T, Kojima T, Tomaru M, Maeno S (2017) High-resolution modeling of tsunami run-up flooding: a case study of flooding in Kamaishi city, Japan, induced by the 2011 Tohoku tsunami. Nat Hazards Earth Syst Sci 17:1871–1883

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999) Surface length scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour Res 35(7):2121–2132

    Article  Google Scholar 

  • Arcement GJ, Schneider VR (1989) Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. U.S. geological survey water-supply paper 2339

  • Beardsley RC, Chen C, Xu Q (2013) Coastal flooding in Scituate (MA): a FVCOM study of the 27 December 2010 nor’easter. J Geophys Res Oceans 118:6030–6045

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: sRTM30_PLUS. Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Blumberg AF, Georgas N, Yin L, Herrington TO, Orton PM (2015) Street-scale modeling of storm surge inundation along the New Jersey Hudson River waterfront. J Atmos Oceanic Tech 32:1486–1497

    Article  Google Scholar 

  • Bricker JD, Gibson S, Takagi H, Imamura F (2015a) On the need for larger Manning’s roughness coefficients in depth-integrated tsunami inundation models. Coast Eng J 57:1550005

    Article  Google Scholar 

  • Bricker JD, Volker R, Fukutani Y, Kure S (2015b) Simulation of the December 2014 Nemuro storm surge and incident waves. J Jap Soc Civ Eng Ser B2 (Coast Eng) 71(2):I_1543–I_1548. https://doi.org/10.2208/kaigan.71.I_1543

    Article  Google Scholar 

  • Brown JD, Spencer T, Moeller I (2007) Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: a case study of Canvey Island United Kingdom. Water Resour Res 43:W06402

    Google Scholar 

  • Bunya S, Dietrich JC et al (2010) A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi: part I—model development and validation. Mon Weather Rev 138:345–377

    Article  Google Scholar 

  • Chen C, Beardsley RC et al (2012) An unstructured-grid, finite-volume community ocean model FVCOM user manual, 3rd edn. pp 408, MITSG 12–25. http://fvcom.smast.umassd.edu/wp-content/uploads/2013/11/MITSG_12-25.pdf Accessed 27 July 2018)

  • Chen C, Liu H, Beardsley RC (2003) An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J Atmos Ocean Tech 20:159–186

    Article  Google Scholar 

  • Chen C, Huang H, Beardsley RC, Liu H, Xu Q, Cowles GA (2007) Finite-volume numerical approach for coastal ocean circulation studies: comparisons with finite difference models. J Geophys Res 112:C03018

    Google Scholar 

  • Chen C, Beardsley RC, Luettich RA Jr, Westerink JJ, Wang H, Perrie W, Xu Q, Donahue AS, Qi J, Lin H, Zhao L, Kerr PC, Meng Y, Toulany B (2013) Extratropical storm inundation testbed: intermodel comparisons in Scituate, Massachusetts. J Geophys Res Oceans 118:1–20

    Google Scholar 

  • Cheng RT, Ling C-H, Gartner JW, Wang PF (1999) Estimates of bottom roughness length and bottom shear stress in south San Francisco Bay, California. J Geophys Res Oceans 104:7715–7728

    Article  Google Scholar 

  • Chock G, Carden L, Robertson I, Olsen M, Yu G (2013) Tohoku tsunami-induced building failure analysis with implications for U.S. Tsunami and seismic design codes. Earthq Spectra 29(S1):S99–S126

    Article  Google Scholar 

  • Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA Jr, Jensen RE, Smith JM, Stelling GS, Stone GW (2011) Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng 58(1):45–65

    Article  Google Scholar 

  • Emanuel K (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Nat Acad Sci 110:12219–12224

    Article  Google Scholar 

  • Feddersen F, Gallagher EL, Guza RT, Elgar S (2003) The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coast Eng 48:189–195

    Article  Google Scholar 

  • Fewtrell TJ, Duncan A, Sampson CC, Neal JC, Bates PD (2011) Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys Chem Earth 36:281–291

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Honda C, Mitsuyasu K (1980) Laboratory study on wind effect to ocean surface. J Coast Eng JSCE 27:90–93. https://doi.org/10.2208/proce1970.27.90 (in Japanese)

    Article  Google Scholar 

  • Huang H, Chen C, Cowles GW, Winant CD, Beardsley RC, Hedstrom KS, Haidvogel DB (2008) FVCOM validation experiments: comparisons with ROMS for three idealized barotropic test problems. J Geophys Res 113:C07042

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jonkman SN, Penning-Rowsell E (2008) Human instability in flood flows. J Am Water Resour As 44:5

    Article  Google Scholar 

  • Karima MF, Mimura N (2008) Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Global Environ Change 18(3):490–500

    Article  Google Scholar 

  • Karvonen RA, Hepojoki HK, Huhta HK, Louhio A (2000) The use of physical models in dam-break flood analysis, development of Rescue Actions Based on Dam-Break Flood Analysis (RESCDAM). Final report of Helsinki University of Technology, Finnish Environment Institute. http://ec.europa.eu/echo/files/civil_protection/civil/act_prog_rep/rescdam_rapportfin.pdf. Accessed 5 Aug 2019

  • Kumagai K, Seki K, Fujiki T, Tomita T, Tsuruta N, Sakai K, Yamamoto Y, Kakizaki E (2015) Damage of Nemuro port and its surrounding areas due to the storm-surge in 17 December 2014. Technical Note of National Institute for Land and Infrastructure Management 854. (in Japanese with English Abstract) http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0854pdf/ks0854.pdf. Accessed 5 Aug 2019

  • Kumagai K, Kim S-Y, Tsujio D, Mase H, Tsuji T (2017) Coupled Modelling of wave and storm surge for explosive cyclone 2014 in the east coast of Hokkaido. J Jpn Soc Civ Eng Ser B (Coast Eng) 73(2):I_193–I_198. https://doi.org/10.2208/kaigan.73.i_193 (in Japanese with English Abstract)

    Article  Google Scholar 

  • Kuwano-Yoshida A, Minobe S (2016) Storm-track response to SST fronts in the northwestern Pacific region in an AGCM. J Clim 30(3):1081–1102

    Article  Google Scholar 

  • Kvočka D, Falconer RA, Bray M (2016) Flood hazard assessment for extreme flood events. Nat Hazards 84:1569–1599

    Article  Google Scholar 

  • Lind N, Hartford D (2000) Probability of human instability in a flooding: a hydrodynamic model. In: Melchers E, Stewart MG (eds). Proceedings of ICASP 8, applications of statistics and probability, Balkema, Rotterdam 1151–1156

  • Lind N, Hartford D, Assaf H (2004) Hydrodynamic models of human instability in a flood. J Am Water Resour As 40(1):89–96

    Article  Google Scholar 

  • Longuet-Higgins MS, Stewart R (1962) Radiation stress and mass transport in gravity waves, with application to surf-beats. J F Mech 13:481–504

    Article  Google Scholar 

  • Mäll M, Suursaar Ü, Nakamura R, Shibayama T (2017) Modelling a storm surge under future climate scenarios: case study of extratropical cyclone Gudrun (2005). Nat Hazards 89(3):1119–1144

    Article  Google Scholar 

  • Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56:567–581

    Article  Google Scholar 

  • Nakamura R, Iwamoto T, Shibayama T, Mikami T, Matsuba S, Mäll M, Tatekoji A, Tanokura Y (2015) Field survey and mechanism of storm surge generation invoked by the low pressure with rapid development in Nemuro Hokkaido in December 2014. J Jap Soc Civ Eng Ser B3 (Ocean Eng) 71(2):I_31–I_36. https://doi.org/10.2208/jscejoe.71.i_31 (in Japanese with English Abstract)

    Article  Google Scholar 

  • Nakamura R, Shibayama T, Esteban M, Iwamoto T (2016) Future typhoon and storm surges under different global warming scenarios: case study of Typhoon Haiyan (2013). Nat Hazards 82(3):1645–1681

    Article  Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10(3):e0118571

    Article  Google Scholar 

  • Olbert AL, Comer J, Nash S, Hartnett M (2017) High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows: A Cork city example. Coast Eng 121:278–296

    Article  Google Scholar 

  • OpenStreetMap (2017) OpenStreetMap Japan. https://openstreetmap.jp/ Accessed 04 Jan 2018

  • Powell MD, Vickery PJ, Reinhold TA (2006) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Qi J, Chen C, Beardsley RC, Perrie W, Cowles G (2009) An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model 28:153–166

    Article  Google Scholar 

  • Ramsbottom D, Wade S, Bain V, Hassan M, Penning-Rowsell E, Wilson T, Fernandez A, House M, Floyd P (2004) R&D outputs: flood risks to people. Phase 2. FD2321⁄IR2. Department for the Environment, Food and Rural Affairs/Environment Agency, London, United Kingdom

  • Saruwatari A, Coutinho DA, Kato M, Nikawa O, Watanabe Y (2015) Report on the 2014 winter cyclone storm surge in Nemuro Japan. Coast Eng J 57(03):1550014

    Article  Google Scholar 

  • Schubert JE, Sanders BF (2012) Building treatments for urban flood inundation models and implications for predictive skill and modelling efficiency. Adv Water Resour 41:49–64

    Article  Google Scholar 

  • Statistics Bureau of Japan (2017) Statistics Handbook of Japan 2017. Ministry of internal affairs and communication, Japan. http://www.stat.go.jp/english/data/handbook/pdf/2017all.pdf. Accessed 5 Aug 2019

  • Sun Y, Chen C, Beardsley RC, Xu Q, Qi J, Lin H (2013) Impact of current-wave interaction on storm surge simulation: a case study for Hurricane Bob. J Geophys Res Ocean 118:2685–2701

    Article  Google Scholar 

  • Takabatake T, Mäll M, Esteban M, Nakamura R, Kyaw TO, Ishii H, Valdez JJ, Nishida Y, Noya F, Shibayama T (2018) Field survey of 2018 Typhoon Jebi in Japan: lessons for disaster risk management. Geosciences 8:412

    Article  Google Scholar 

  • Takagi H, Li S, de Leon M, Esteban M, Mikami T, Matsumaru R, Shibayama T, Nakamura R (2016) Storm surge and evacuation in urban areas during the peak of a storm. Coast Eng 108:1–9

    Article  Google Scholar 

  • Takahashi S, Endoh K, Muro ZI (1992) Experimental study on people’s safety against overtopping waves on breakwaters. 20 rep 31-04 The Port and Harbour Res Inst, Yokosuka, Japan

  • Tasnim KM, Shibayama T, Esteban M, Takagi H, Ohira K, Nakamura R (2014) Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: case study of cyclone Nargis. Nat Hazards 75(2):1619–1647

    Article  Google Scholar 

  • Weisberg RH, Zheng L (2008) Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay Florida region. J Geophys Res Oceans 113:C12001

    Article  Google Scholar 

  • Xia J, Falconer RA, Lin B, Tan G (2011) Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environ Model Softw 26:987–998

    Article  Google Scholar 

  • Yang Z, Wang T, Leung R, Hibbard K, Janetos T, Kraucunas I, Rice J, Preston B, Wilbanks TA (2014) Modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico. Nat Hazards 71(3):1771–1794

    Article  Google Scholar 

  • Yasuda T, Nakajo S, Kim S-Y, Mase H, Mori N, Horsburgh K (2014) Evaluation of future storm surge risk in East Asia based on state-of-the-art climate change projection. Coast Eng 83:65–71

    Article  Google Scholar 

  • Yin J, Lin N, Yu D (2016) Coupled modeling of storm surge and coastal inundation: a case study in New York City during Hurricane Sandy. Water Resour Res 52:8685–8699

    Article  Google Scholar 

  • Yoon JJ, Shim JS, Park KS, Lee JC (2014) Numerical experiments of storm winds, surges, and waves on the southern coast of Korea during Typhoon Sanba: the role of revising wind force. Nat Hazards Earth Syst Sci 14:3279–3295

    Article  Google Scholar 

  • Yu D, Lane SN (2006) Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: development of a sub-grid-scale treatment. Hydrol Process 20:1567–1583

    Article  Google Scholar 

  • Zhang A, Wei E (2007) Delaware River and bay hydrodynamic simulations with FVCOM. In: 10th international conference on estuarine and coastal modeling 324:2

  • Zheng L, Weisberg RH, Huang Y, Luettich RA, Westerink JJ, Kerr PC, Donahue AS, Crane G, Akli L (2013) Implications from the comparisons between two- and three-dimensional model simulations of the Hurricane Ike storm surge. J Geophys Res Oceans 118:3350–3369

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by: the Strategic Young Researcher fund from Toyohashi University of Technology; a Grant-in-Aid for a Research Activity Start-up (No. 17H06760) and for Early-Career Scientists (No. 19K15098), from the Japan Society for the Promotion of Science, Research Institute of Sustainable Future Society, Waseda University; and a Strategic Research Foundation Grant-aided Project for Private Universities, from the Ministry of Education, Culture, Sports, Science and Technology (Waseda University: No. S1311028). The authors express an appreciation to officers in the Nemuro City Government and the Hokkaido Development Bureau, for providing data on sea levels and coastal levee heights. Finally, we would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Nakamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, R., Mäll, M. & Shibayama, T. Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan. Nat Hazards 99, 391–422 (2019). https://doi.org/10.1007/s11069-019-03746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03746-6

Keywords

Navigation