Skip to main content

Advertisement

Log in

Complete flood frequency analysis in Abiod watershed, Biskra (Algeria)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Extreme hydrological events, such as floods and droughts, are one of the natural disasters that occur in several parts of the world. They are regarded as being the most costly natural risks in terms of the disastrous consequences in human lives and in property damages. The main objective of the present study is to estimate flood events of Abiod wadi at given return periods at the gauge station of M’chouneche, located closely to the city of Biskra in a semiarid region of southern east of Algeria. This is a problematic issue in several ways, because of the existence of a dam to the downstream, including the field of the sedimentation and the water leaks through the dam during floods. The considered data series is new. A complete frequency analysis is performed on a series of observed daily average discharges, including classical statistical tools as well as recent techniques. The obtained results show that the generalized Pareto distribution (GPD), for which the parameters were estimated by the maximum likelihood (ML) method, describes the analyzed series better. This study also indicates to the decision-makers the importance to continue monitoring data at this station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans. Automatic Conrol 19(6):716–723

    Article  Google Scholar 

  • Ashkar F, Ouarda TBMJ (1993) Robust estimators in hydrologic frequency analysis. In: Kuo CY (ed) Engineering hydrology. Am. Soc. Civ. Eng., New York, pp 347–352

    Google Scholar 

  • Balkema AA, de Haan L (1974) Residual lifetime at great age. Ann Probab 2:792–804

    Article  Google Scholar 

  • Bayazıt M, Shaban F, Onoz B (1997) Generalized extreme value distribution for flood discharges. Turk J Eng Environ Sci 21(2):69–73

    Google Scholar 

  • Beirlant J, Goegebeur Y, Segers J, Teugels J, de Waal D, Ferro C (2004) Statistics of extremes: theory and applications. Wiley

  • Benazzouz MT (2010) Flash floods in Algeria: impact and management. G-WADI meeting. Flash Flood Risk Management Expert Group. Meeting Cairo 25–27 September 2010, Egypt

  • Benkhaled A, Higgins H, Chebana F, Necir A (2014) Frequency analysis of annual maximum suspended sediment concentrations in Abiod wadi, Biskra (Algeria). Hydrol Process 28(12):3841–3854

    Article  Google Scholar 

  • Beran MA, Nozdryn-Plotnicki MJ (1977) Estimation of low return period floods. Hydrol Sci Bull 22(2):275–282

    Article  Google Scholar 

  • Bobée B (1999) Extreme flood events valuation using frequency analysis. A Crit Rev. Houille Blanche 54:100–105

    Article  Google Scholar 

  • Bobée B, Ashkar F (1991) The gamma family and derived distributions applied in hydrology. Water Resources Publications

  • Bouanani A (2005) Hydrologie, Transport solide et Modélisation. Etude de quelques sous bassins de la Tafna. Université de Tlemcen

  • Chebana F, Ouarda TBMJ (2011) Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1):63–78

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ, Bruneau P, Barbet M, El Adlouni S, Latraverse M (2009) Multivariate homogeneity testing in a northern case study in the province of Quebec Canada. Hydrol Process 23:1690–1700

    Article  Google Scholar 

  • Chebana F, Adlouni S, Bobée B (2010) Mixed estimation methods for Halphen distributions with applications in extreme hydrologic events. Stoch Env Res Risk Assess 24(3):359–376

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Clarke RT (1994) Fitting distributions. Chapter 4 Statistical modeling in hydrology. Wiley, pp 39–85

  • de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer Series in Operations Research and Financial Engineering, Boston

    Book  Google Scholar 

  • Dubief J (1953) Essai sur l’hydrologie superficielle au Sahara. GGA, Direction du Service de la Colonisation et de l’Hydraulique, Service des Etudes Scientifiques, Alger, p 457

    Google Scholar 

  • Ehsanzadeh E, El Adlouni S, Bobee B (2010) Frequency analysis incorporating a decision support system for hydroclimatic variables. J Hydrol Eng 15(11):869–881

    Article  Google Scholar 

  • El Adlouni S, Bobée B (2010) Système d’aide à la decision pour l’estimation du risqué hydrologique. IASH Publ, p 340

  • El Adlouni S, Bobée B, Ouarda TBMJ (2008) On the tails of extreme event distributions in hydrology. J Hydrol 355:16–33

    Article  Google Scholar 

  • Ellouze M, Abida H (2008) Regional flood frequency analysis in Tunisia: identification of regional distributions. Water Resour Manag 22(8):943–957

    Article  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Heidelberg

    Book  Google Scholar 

  • Grubbs FE, Beck G (1972) Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics 14:847–854

    Article  Google Scholar 

  • Haktanir T (1992) Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia. J Hydrol 136:1–31

    Article  Google Scholar 

  • Hamel A (2009) Hydrogéologie des systèmes aquifères en pays montagneux à climat semi-aride. Cas de la vallée d’Oued El Abiod (Aurès). Université, Mentouri, Constantine

  • Hebal A, Remini B (2011) Choix du modèle fréquentiel le plus adéquat à l’estimation des valeurs extrêmes de crues (cas du nord de L’Algérie). Can J Civ Eng 38(8):881–892

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc 52:105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29:339–349

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis; an approach based on L-moments. Cambridge University Press, Cambridge, p 224

    Book  Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme value distribution by the method of probability-weighted moments. Technometrics 27:257–261

    Article  Google Scholar 

  • (IACWD), I. C. o. W. D. (1982) Guidelines for determining flood flow frequency: bulletin 17B (revised and corrected). Hydrol. Subcomm, Washington, DC, p 28

    Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314

    Google Scholar 

  • Institute of Hydrology (IH) (1999) Flood estimation handbook. Wallingford, UK, p 1999

    Google Scholar 

  • Karim MA, Chowdhury JU (1995) A comparison of four distributions used in flood frequency analysis in Bangladesh. Hydrol Sci J 40(1):55–66

    Article  Google Scholar 

  • Khamis HJ (1997) The delta-corrected Kolmogorov–Smirnov test for the two-parameter Weibull distribution. J Appl Stat 24(3):301–318

    Article  Google Scholar 

  • Kite GW (1988) Flood and risk analyses in hydrology. Water Resources Publications, Littleton, p 187

    Google Scholar 

  • Koutsoyiannis D (2003) On the appropriateness of the Gumbel distribution for modeling extreme rainfall. In: Brath A, Montanari A Toth E (eds) Hydrological risk: recent advances in peak river flow modelling, prediction and realtime forecasting. Assessment of the impacts of land-use and climate changes. Editoriale Bios, Castrolibero, Bologna, pp 303–319

  • Laio F (2004) Cramer–von Mises and Anderson–Darling goodness of fit tests for extreme value distribution with unknown parameters. Water Resour Res W09308:40

    Google Scholar 

  • Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117

    Article  Google Scholar 

  • Liao M, Shimokawa T (1999) A new goodness-of-fit test for type-I extreme-value and 2-parameter Weibull distributions with estimated parameters. J Stat Comput Simul 64(1):23–48

    Article  Google Scholar 

  • Mebarki A (2005) Hydrologie des bassins de l’Est Algérien. Thèse de doctorat, Université de Constantine, Constantine

  • Mutua FM (1994) The use of the Akaike information criterion in the identification of an optimum flood frequency model. Hydrol Sci J 39(3):235–244

    Article  Google Scholar 

  • National Research Council (NRC) (1988) Estimating probabilities of extreme floods: methods and recommended research. National Academy Press

  • Natural Environment Research Council (NERC) (1975) Flood studies report. London, p 1

  • Natural Environment Research Council (NERC) (1999) Flood studies report, in five volumes. Institute of Hydrology, Wallingford

    Google Scholar 

  • Ouarda TBMJ, Ashkar F, Bensaid E, Hourani I (1994) Statistical distributions used in hydrology. Transformations and asymptotic properties. University of Moncton, Moncton

    Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Article  Google Scholar 

  • Rao AR, Hamed KH (2000) Flood Frequency Analysis. City

  • Rasmussen PF, Ashkar F, Rosbjerg D, Bobée B (1994) The POT method for flood estimation: a review. In: Hipel KW (ed) Stochastic and statistical methods in hydrology and environmental engineering, extreme values: floods and droughts. Kluwer Academic, Dordrecht. Water Sci Technol Libr 1:15–26

  • Reiss RD, Thomas M (2007) Statistical analysis of extreme values: with applications to insurance, finance, hydrology and other fields. Birkhäuser Verlag, Basel

    Google Scholar 

  • Salas JD, Smith R (1980) Computer programs of distribution functions in hydrology. Colorado State University, Fort Collins

    Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat As 82(399):918–924

    Google Scholar 

  • Schwartz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Tanaka S, Takara K (2002) A study on threshold selection in POT analysis of extreme floods. IAHS-AISH publication, p 271

  • Todorovic P, Zelenhasic E (1970) A stochastic model for flood analysis. Water Resour Res 6(6):1641–1648

    Article  Google Scholar 

  • Tramblay Y, St-Hilaire A, Ouarda TBMJ (2008) Frequency analysis of maximum annual suspended sediment concentrations in North America. Hydrol Sci J 53(1):236–252

    Article  Google Scholar 

  • Vogel RM, McMahon TA, Chiew FHS (1993) Floodflow frequency model selection in Australia. J Hydrol 146:421–449

    Article  Google Scholar 

  • Willeke GE, Hosking JR, Wallis JR, Guttman NB (1995) The national drought atlas (draft), IWR Rep US Army, Corps of Eng, 94-NDS-4

Download references

Acknowledgements

The authors are thankful to the Editor and two reviewers for their constructive comments and suggestions. The authors express their gratefulness to the financial support of Canada’s International Development Research Centre (IDRC). The data used in this study were provided by the National Agency of Water Resource of Algeria (ANRH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chebana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benameur, S., Benkhaled, A., Meraghni, D. et al. Complete flood frequency analysis in Abiod watershed, Biskra (Algeria). Nat Hazards 86, 519–534 (2017). https://doi.org/10.1007/s11069-016-2703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2703-4

Keywords

Navigation