Skip to main content
Log in

Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this article, we present an assimilation impact study for forecasting hurricane Sandy using a three‐dimensional variational data assimilation system (3DVAR). In particular, we employ the 3DVAR component of the Weather Research and Forecasting Model and conduct analysis/forecast cycling experiments for “control” and “radiance” assimilation cases for the hurricane Sandy period. In “control” assimilation experiment, only conventional air and surface observations data are assimilated, while, in “radiance” assimilation experiment, along with the conventional air and surface observations data, the satellite radiance data from the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) sensors are also assimilated. For the radiance assimilation, we employ the community radiative transfer model as the forward operator and perform quality control and bias correction procedure before the radiance data are assimilated. In order to assess the impact of the assimilation experiments, we produce 132-h deterministic forecast starting on 00 UTC October 25, 2012. The results reveal that, in particular, the assimilation of AMSU-A satellite radiances helps to improve the short- to medium-range forecast (up to ~60-h lead time). The forecast skill is degraded in the long-range forecast (beyond 60 h) with the AMSU-A assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barker DM, Huang W, Guo YR, Bourgeois AJ, Xiao QN (2004) A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon Weather Rev 132(4):897–914. doi:10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2

    Article  Google Scholar 

  • Chambon P, Zhang SQ, Hou AY, Zupanski M, Cheung S (2014) Assessing the impact of pre-GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system. Q J R Meteorol Soc 140(681):1219–1235. doi:10.1002/qj.2215

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585. doi:10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2

    Article  Google Scholar 

  • Chou CB, Huang HP (2011) The impact of assimilating Atmospheric Infrared Sounder observation on the forecast of typhoon tracks. Adv Meteorol. doi:10.1155/2011/803593

    Google Scholar 

  • Dai Q, Han DW, Rico-Ramirez MA, Islam T (2013) The impact of raindrop drift in a three-dimensional wind field on a radar-gauge rainfall comparison. Int J Remote Sens 34(21):7739–7760. doi:10.1080/01431161.2013.826838

    Article  Google Scholar 

  • Dong HP, Li XW, Guo WD, Gao TC (2013) A study on satellite data assimilation with different ATOVS in typhoon numerical experiments. J Trop Meteorol 19(3):242–252

    Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120. doi:10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. doi:10.1175/mwr3199.1

    Article  Google Scholar 

  • Ishak A, Remesan R, Srivastava P, Islam T, Han DW (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manag 27(1):1–23. doi:10.1007/s11269-012-0130-1

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han DW, Bray M, Srivastava PK (2013) Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations. Theor Appl Climatol 112(1–2):317–338. doi:10.1007/s00704-012-0721-z

    Article  Google Scholar 

  • Islam T, Rico-Ramirez MA, Han DW, Srivastava PK (2014) Sensitivity associated with bright band/melting layer location on radar reflectivity correction for attenuation at C-band using differential propagation phase measurements. Atmos Res 135:143–158. doi:10.1016/j.atmosres.2013.09.003

    Article  Google Scholar 

  • Islam T, Srivastava PK, Rico-Ramirez MA, Dai Q, Gupta M, Singh SK (2015) Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Nat Hazards 76(3):1473–1495. doi:10.1007/s11069-014-1494-8

    Article  Google Scholar 

  • Jones TA, Stensrud DJ (2012) Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Weather Forecast 27(3):541–564. doi:10.1175/waf-d-11-00090.1

    Article  Google Scholar 

  • Liu QH, Weng FZ (2013) Using advanced matrix operator (AMOM) in community radiative transfer model. IEEE J Sel Top Appl Earth Observ Remote Sens 6(3):1211–1218. doi:10.1109/jstars.2013.2247026

    Article  Google Scholar 

  • Liu ZQ, Schwartz CS, Snyder C, Ha SY (2012) Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon Weather Rev 140(12):4017–4034. doi:10.1175/mwr-d-12-00083.1

    Article  Google Scholar 

  • Liu QH, Xue Y, Li C (2013) Sensor-based clear and cloud radiance calculations in the community radiative transfer model. Appl Opt 52(20):4981–4990. doi:10.1364/ao.52.004981

    Article  Google Scholar 

  • Singh R, Kishtawal CM, Pal PK, Joshi PC (2012) Improved tropical cyclone forecasts over north Indian Ocean with direct assimilation of AMSU-A radiances. Meteorol Atmos Phys 115(1–2):15–34. doi:10.1007/s00703-011-0165-5

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485. doi:10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Srivastava PK, Han DW, Ramirez MAR, Islam T (2013) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through Weather Research and Forecasting model. Atmos Sci Lett 14(2):118–125. doi:10.1002/asl2.427

    Article  Google Scholar 

  • Subramani D, Chandrasekar R, Ramanujam KS, Balaji C (2014) A new ensemble-based data assimilation algorithm to improve track prediction of tropical cyclones. Nat Hazards 71(1):659–682. doi:10.1007/s11069-013-0942-1

    Article  Google Scholar 

  • Wu WS, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev 130(12):2905–2916. doi:10.1175/1520-0493(2002)130<2905:tdvaws>2.0.co;2

    Article  Google Scholar 

  • Xu JJ, Powell AM (2012) Dynamical downscaling precipitation over Southwest Asia: impacts of radiance data assimilation on the forecasts of the WRF-ARW model. Atmos Res 111:90–103. doi:10.1016/j.atmosres.2012.03.005

    Article  Google Scholar 

  • Xu DM, Liu ZQ, Huang XY, Min JZ, Wang HL (2013) Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol Atmos Phys 122(1–2):1–18. doi:10.1007/s00703-013-0276-2

    Article  Google Scholar 

  • Zhang SQ, Zupanski M, Hou AY, Lin X, Cheung SH (2013) Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon Weather Rev 141(2):754–772. doi:10.1175/mwr-d-12-00055.1

    Article  Google Scholar 

  • Zou XL, Qin ZK, Weng FZ (2013) Improved quantitative precipitation forecasts by MHS radiance data assimilation with a newly added cloud detection algorithm. Mon Weather Rev 141(9):3203–3221. doi:10.1175/mwr-d-13-00009.1

    Article  Google Scholar 

  • Zupanski D, Zhang SQ, Zupanski M, Hou AY, Cheung SH (2011) A prototype WRF-based ensemble data assimilation system for dynamically downscaling satellite precipitation observations. J Hydrometeorol 12(1):118–134. doi:10.1175/2010jhm1271.1

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The data for this study are from NOAA’s National Operational Model Archive and Distribution System (NOMADS) which is maintained at NOAA’s National Climatic Data Center (NCDC). The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA, NASA, or the authors’ affiliated institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, T., Srivastava, P.K., Kumar, D. et al. Satellite radiance assimilation using a 3DVAR assimilation system for hurricane Sandy forecasts. Nat Hazards 82, 845–855 (2016). https://doi.org/10.1007/s11069-016-2221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2221-4

Keywords

Navigation