Skip to main content

Advertisement

Log in

Climate change influence on runoff and soil losses in a rainfed basin with Mediterranean climate

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The present research shows the results of possible effects of climate change on runoff and soil loss in a rainfed basin located in the Alt Penedès and Anoia region (NE Spain). Viticulture is an important economic activity in this region, and vines for the production of high-quality wines and “cavas” are the main land use. Climate data for the period 2000–2012 and detailed soil and land use maps were used as input data for soil and water assessment tool to model the effects of climate change. The analysis compared simulated results for years with different climatic conditions during that period with predicted temperature and precipitation data for 2020, 2050 and 2080 based on data obtained from the Hadley Centre Coupled Model, version 3, A2 scenario and the trends observed in the area. The research confirmed the difficulty of predicting future soil loss in this region, which has very high inter-annual climate variability. Despite only small changes in precipitation, the model simulated a decrease in soil loss associated with a decrease in runoff, mainly driven by an increase in evapotranspiration. However, the trend in soil losses may vary when changes in precipitation balance the increase in evapotranspiration and when rainfall intensity increases. An increase in maximum rainfall intensity in spring and autumn (main rainy seasons) produced significant increases in soil loss: as high as 12 % for the 2020 scenario and 57 % for the 2050 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bagnold RA (1977) Bed load transport by natural rivers. Water Resour Res 13:303–312

    Article  Google Scholar 

  • Bang HQ, Quan NH, Phu VL (2013) Impacts of climate change on catchment flows and assessing its impacts on hydropower in Vietnam’s central highland region. Global Perspect Geogr 1(1):1–8

    Article  Google Scholar 

  • Bienes R, Marqués MJ, Ruíz-Colmenero M (2012) Herbaceous crops, vineyards and olive groves. The traditional land management and its impact on water erosion. Cuadernos de InvestigaciónGeográfica 38(1):49–74

    Article  Google Scholar 

  • Camps JO, Ramos MC (2012) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. Int J Biometeorol 56:853–864

    Article  Google Scholar 

  • Dadson S, Irvine B, Kirkby M (2010) Effects of climate change on soil erosion: estimates using newly-available regional climate model data at a pan-European scale. Geophy Res Abstract 12, EGU2010-7047

  • DAR (2008) Mapa de Sòls (1:25.000) de l’àmbit geogràfic de la Denominaciód’OrigenPenedès. Departamentd’Agricultura, Alimentació i Acció Rural, Generalitat de Catalunya, Vilafranca del Penedès-Lleida

  • Easterling DR, Meehl GA, Parmensan C, Chagnon SA, Kart T, Mearns LO (2000) Climate extremes: observation, modelling and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Favis-Mortlock DT, Boardman J (1995) Nonlinear responses of soil erosion to climate change: a modelling study on the UK South Downs. Catena 25:365–387

    Article  Google Scholar 

  • González-Hidalgo JC, Brunetti M, de Luis M (2010) Precipitation trends in Spanish hydrological divisions, 1946–2005. Clim Res 43(3):215–228

    Article  Google Scholar 

  • Gupta HV, SorooshianS Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI (2010) Intra-annual link of spring and autumn precipitation over France. Clim Dyn 35(7):1207–1218

    Article  Google Scholar 

  • Iowa Learning Farms—Iowa State University (2013) The cost of erosion. http://www.extension.iastate.edu/ilf/sites/www.extension.iastate.edu/files/ilf/Cost_of_Eroded_Soil.pdf

  • Jentsch MF, James PAD, Bahaj AS (2012) Climate change world weather file generator. Sustainable energy research group. University of Southampton. http://www.serg.soton.ac.uk/ccworldweathergen/

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J Clim 16:3665–3680

    Article  Google Scholar 

  • Kosmas CN, DanalatosLH Cammeraat M, Chabart J, Diamantopoulos R, Farand L, Gutierrez A, Jacob H, Marques J, Martinez-Fernandez A, Mizara N, Moustakas JM, Nicolau C, Oliveros G, Pinna R, Puddu J, Puigdefabregas M, Roxo A, Simao G, StamouMn Tomasi D, Usai D, Vacca A (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29:45–59

    Article  Google Scholar 

  • Maetens W, Vanmaercke M, Poesen J, Jankauskas B, Jankauskiene G, Ionita I (2012) Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a meta-analysis of plot data. Prog Phys Geogr 36(5):599–653

    Article  Google Scholar 

  • Märker M, Angeli L, Bottai L, Costantini R, Ferrari R, Innocenti L, Siciliano G (2008) Assessment of land degradation susceptibility by scenario analysis: a case study in southern Tuscany, Italy. Geomorphology 93(1–2):120–129

    Article  Google Scholar 

  • Martínez-Casasnovas JA (2003) A spatial information technology approach for the mapping and quantification of gully erosion. Catena 50:293–308

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Ramos MC (2006) The cost of soil erosion in vineyard fields in the Penedès-Anoia Region (NE Spain). Catena 68:194–199

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Ramos MC (2009) Soil alteration due to erosion, ploughing and levelling of vineyards in north east Spain. Soil Use Manag 25:183–192

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Mukundan R, Pradhanang SM, Schneiderman EM, Pierson DC, Anandhi A, Zion MS, Matonse AH, Lounsbury DG, Steenhuis TS (2013) Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology 183(1):110–119

    Article  Google Scholar 

  • Nash JE, Sutcliffe JE (1970) River flow forecasting through conceptual models. Part 1. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool: theoretical documentation version 2009. Texas water resources institute technical report No. 406. College Station, Texas, USA: Texas A&M University System. Available online from: http://twri.tamu.edu/reports/2011/tr406.pdf Accessed March 2014

  • Nunes JP, Nearing MA (2011) Modelling impacts of climatic change: case studies using the new generation of erosion models. In: Morgan RPC, Nearing MA (eds) Handbook of erosion modelling. Blackwell Publishing Ltd, Hoboken

    Google Scholar 

  • O’Neal MR, Nearing MA, Vining RC, Southworth J, Pfeifer RA (2005) Climate change impacts on soil erosion in midwest United States with changes in crop management. Catena 61:165–184

    Article  Google Scholar 

  • Panagos P, Montanarella L (2014). What is the Cost of Soil Erosion in Europe? 20th world congress of soil science. Joint research centre (JRC).http://eusoils.jrc.ec.europa.eu/events/Conferences/20WCSS/Presentations/Soil_ErosionCOST.pdf

  • Paroissien J, Lagacherie P, Le Bissonnais Y (2010) A regional-scale study of multi-decennial erosion of vineyard fields using vine-stock unearthing–burying measurements. Catena 82:159–168

    Article  Google Scholar 

  • Ramos MC, Durán B (2014) Assessment of rainfall erosivity and its spatial and temporal variabilities: case study of the Penedès area (NE Spain). Catena 123:135–147

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2009) Impacts of annual precipitation extremes on soil and nutrient losses in vineyards of NE Spain. Hydrol Process 23:224–235

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2010) Effectsoffieldreorganisationonthespatial variability of runoff and erosion rates in vineyards of Northeastern Spain. Land Degrad Dev 21:1–15

    Article  Google Scholar 

  • Ramos MC, Martínez-Casasnovas JA (2014) Soil water content, runoff and soil loss prediction in a small ungauged agricultural catchment in the Mediterranean region using the soil and water assessment tool. J Agric Sci. doi:10.1017/S0021859614000422

    Google Scholar 

  • Ramos MC, Porta J (1997) Analysis of design criteria for vineyard terraces in Mediterranean area of North East Spain. Soil Technology 10:155–166

    Article  Google Scholar 

  • Ramos MC, Balash JC, Martínez-Casasnovas JA (2012) Seasonal temperature and precipitation variability during the last 60 years in a Mediterranean climate area of Northeastern Spain: a multivariate analysis. Theor Appl Climatol 110:35–53

    Article  Google Scholar 

  • Ruiz-Colmenero M, Bienes R, Eldridge DJ, Marques MJ (2013) Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena 104:153–160

    Article  Google Scholar 

  • Scholz G, Quinton JN, Strauss P (2008) Soil erosion from sugar beet in central Europe in response to climate change induced seasonal precipitation variations. Catena 72(1):91–105

    Article  Google Scholar 

  • Schwing JF (1978) L’erosion des sols dans le vignoble alsacien, son importance et son evolution en fonction des techniques agricoles. Catena 5:305–319

    Article  Google Scholar 

  • USDA-SCS (1985) national engineering handbook, section 4: hydrology. USDA-SCS, Washington, D.C.

    Google Scholar 

  • van der Velde M, Balkovič J, Beer C, Khabarov N, Kuhnert M, Obersteiner M, Skalský R, Xiong W, Smith P (2014) Future climate variability impacts on potential erosion and soil organic carbon in European croplands. Biogeosci Discuss 11:1561–1585

    Article  Google Scholar 

  • Wicherek S (1991) Viticulture and soil erosion in the north of Parisian Basin. Example: the mid Aisne region. Zeitschrift fur Geomorphologie, Supplement band 83:115–126

    Google Scholar 

  • Williams JR, Berndt HD (1977) Sediment yield prediction based on watershed hydrology. Trans ASAE 20:1100–1104

    Article  Google Scholar 

  • Wischmeier WH, Johnson CB, Cross BV (1971) A Soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193

    Google Scholar 

  • Zhang Y, Hernandez M, Anson E, Nearing MA, Wei H, Stone JJ, Heilman P (2012) Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices. J Soil Water Conserv 67(5):390–405

    Article  Google Scholar 

Download references

Acknowledgments

This work is a part of research project AGL2009-08353 funded by the Spanish Ministry of Science and Innovation. We would like to thank the Castell d’ Age winery for their support and for allowing us to carry out field experiments on their property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Martínez-Casasnovas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M.C., Martínez-Casasnovas, J.A. Climate change influence on runoff and soil losses in a rainfed basin with Mediterranean climate. Nat Hazards 78, 1065–1089 (2015). https://doi.org/10.1007/s11069-015-1759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1759-x

Keywords

Navigation