Skip to main content
Log in

Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

GPS is frequently used in the monitoring of natural hazards and other geophysical phenomena. Landslide monitoring is one such area in which various GPS methods are tested and various systematic error sources are introduced. In previous studies, one error source introduced on rapid static GPS was the effect of large height differences in GPS positions. In this study, we further investigate how GPS velocities/slip rates are affected by large station height differences when rapid static surveying is used. In order to demonstrate the influences, we used static GPS measurements from the Koyulhisar landslide in central Turkey. Comparison of rapid static GPS solutions with static GPS solutions using BERNESE 5.0 indicates that systematic biases occur in the estimated rapid static GPS deformation rates when the station height difference is large between baseline points. The effect is more significant on the vertical component, whereas it is negligible on the horizontal components. When reducing the height difference between the reference station and the rover stations, rapid static solutions from 15-min sessions show high correlation and similar deformation rates with static positioning solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baarda W (1967) Statistical concepts in geodesy. Publication on Geodesy, New Series 2(4), Netherlands Geodetic Commission

  • Baarda W (1968) A testing procedure for use in geodetic networks. Publication on Geodesy, New Series, 2(5), Netherlands Geodetic Commission

  • Beutler G, Bock H, Brockmann E, Dach R, Fridez P, Gäde A, Hugentobler U, Ineichen D, Jaeggi A, Meindl M, Mervart L, Rothacher M, Schaer S, Springer T, Weber R (2001) Bernese GPS software version 4.2. In: Hugentobler U, Schaer S and Fridez P (eds), Astronomical Institute, University of Berne, 515 pp

  • Beutler G, Bock H, Brockmann E, Dach R, Fridez P, Gurtner W, Hugentobler U, Ineichen D, Johnson J, Meindl M, Mervart L, Rothacher M, Schaer S, Springer T, Urschl C (2005) Bernese GPS software version 5.0 draft. In: Hugentobler U, Dach R, Fridez P, Meindl M (eds), Astronomical Institute, University of Berne, 548 pp

  • Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from global positioning System surveys and field instrumentation, July 1998–March 2002. Eng Geol 68:67–101

    Article  Google Scholar 

  • Dixon TH (1991) An Introduction to the global positioning system and some geological applications. Rev Geophys 29(2):249–276

    Article  Google Scholar 

  • Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of inter-station distance and observing-session duration. J Geodesy 75:633–640

    Article  Google Scholar 

  • Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution approach “FARA”: theory and first results. Manuscripta Geod 15:325–356

    Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55:167–192

    Article  Google Scholar 

  • Gurtner W, Hugentobler G, Botton S, Rothacher M, Geiger A, Kahle HG, Schneider D, Wiget A (1989) The use of the global positioning system in mountainous areas. Manuscripta Geod 14:53–60

    Google Scholar 

  • Hastaoglu KO, Sanli DU (2008) Accuracy of GPS rapid static positioning: Application to Koyulhisar landslide, central Turkey. Survey Review (in press)

  • Hastaoglu KO, Sanli DU, Poyraz F, Ayazli IE (2009) Comparison of estimation methods for tropospheric errors in GPS rapid static method. J Eng Nat Sci 27(4):264–274

    Google Scholar 

  • Hekimoglu S, Erenoglu RC, Sanli DU, Erdogan B (2009) Detecting configuration weaknesses in geodetic networks. Survey Review (in press)

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (1994) GPS, theory and practice, 3rd, rev edn, Springer-Verlag. Wien, New York, p 355

    Google Scholar 

  • Leick A (1995) GPS satellite surveying, 2nd edn. John Wiley and Sons, New York, p 560

    Google Scholar 

  • Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphol 43:33–54

    Article  Google Scholar 

  • Matsushima T, Takagi A (2000) GPS and EDM monitoring of Unzen volcano ground deformation. Earth Planets Space 52:1015–1018

    Google Scholar 

  • Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mazini E, Pesci A (2003) Global positioning systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121

    Article  Google Scholar 

  • Moss JL (2000) Using the global positioning system to monitor dynamic ground deformation networks on potentially active landslides. Int J Appl Earth Obs Geoinformation 2:24–32

    Article  Google Scholar 

  • Moss JL, McGuire WJ, Page D (2000) Ground deformation of a potential landslide at La Palma, Canary Islands. J Volconology Geotherm Res 94:251–256

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research-Solid Earth 111 (B5): Art. No. B05411

  • Roberts C, Rizos C (2001) Mitigating differential troposphere effects for GPS-based volcano monitoring. 5th Int. Symp. on Satellite Navigation Technology, Canberra, Australia, 24–27 July, paper 38, CD-ROM proc

  • Rührnössl H, Brunner FK, Rotacher M (1998) Modelling of the tropospheric correction for deformation measurements with GPS in Alpine areas. (Modelliering der troposphärischen Korrektur für Deformationsmessungen mit GPS im Alpinen Raum.). Allgemeine Vermessungsnachrichten (AVN) 105(1):14–20 in German

    Google Scholar 

  • Sanli DU, Engin C (2009) Accuracy of GPS positioning over regional scales. Surv Rev 41(312):192–200

    Article  Google Scholar 

  • Sanli DU, Kurumahmut F (2008) Accuracy of GPS positioning in the presence of large height differences. In: FIG working week 2008. Available via http://www.fig.net/pub/fig 2008/techprog.htm Accessed 29 Sep 2009

  • Schon S (2007) Affine distortion of small GPS networks with large height differences. GPS Solutions 11:107–117

    Article  Google Scholar 

  • Schwarz RC, Snay AR, Soler T (2009) Accuracy assessment of the National Geodetic Survey’s OPUS-RS utility. GPS Solutions 13:119–132

    Article  Google Scholar 

  • Sendir H, Yılmaz I (2002) Structural, geomorphological and geomechanical aspects of the Koyulhisar landslides in the North Anatolian Fault Zone (Sivas, Turkey). Env Geol 42:52–60

    Article  Google Scholar 

  • Soler T, Michalak P, Weston ND, Snay RA, Foote RH (2005) Accuracy of OPUS solutions for 1- to 4-h observing sessions. GPS Solutions 10:45–55

    Article  Google Scholar 

  • Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79:215–229

    Article  Google Scholar 

  • Teke K, Yalcinkaya M, Konak H (2008) Optimization of GPS networks for landslide areas. Fresenius Environ Bull 17(6):664–675

    Google Scholar 

  • Tut I, Sanli DU, Erdogan B, and Hekimoglu S (2010) Reliability of GPS rapid static positioning, European Geosciences Union (EGU) General Assembly 2010, EGU Abstract, Abstract No: EGU 2010-1200, 2-7 May 2010, Vienna, Austria

  • Ulusay R, Aydan O, Kilic R (2007) Geotechnical assessment of the 2005 Kuzulu landslide (Turkey). Eng Geol 89:112–128

    Article  Google Scholar 

  • Volker J, Roberts C, Rizos C, Hasannuddin Z (2002) Low-cost GPS-based volcano deformation monitoring at Mt. Papandayan, Indonesia. J Volcanol Geotherm Res 115:139–151

    Article  Google Scholar 

  • Yalcinkaya M, Bayrak T (2003) Dynamic model for monitoring landslides with emphasis on underground water in Trabzon Province, northeastern Turkey. J Surv Eng 129(3):115–124

    Article  Google Scholar 

  • Yalcinkaya M, Bayrak T (2005) Comparison of static, kinematic and dynamic geodetic deformation models for Kutlugun Landslide in northeastern Turkey. Nat Hazards 34:91–110

    Article  Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306

    Article  Google Scholar 

Download references

Acknowledgments

BERNESE 5.0 was provided for GPS data processing by TUBITAK MAM under a contract through a State Planning Organization (SPO) project with the grant 2006 K-120220. Some of the GPS campaigns were also funded by the SPO project. Cumhuriyet University funded Koyulhisar Landslide Project with the Grant M-330 and Kemal Hastaoglu’s studentship in Yildiz Technical University. TUBITAK BIDEB also partly supported Kemal Hastaoğlu with a Ph.D. Grant. We used Google Earth to draw the map of the Koyulhisar landslide. The authors are also grateful to the two anonymous reviewers for their comments and contributions in enhancing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. U. Sanli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastaoglu, K.O., Sanli, D.U. Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nat Hazards 58, 1275–1294 (2011). https://doi.org/10.1007/s11069-011-9728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-011-9728-5

Keywords

Navigation