Skip to main content
Log in

A Continuous Space Model of New Economic Geography with a Quasi-Linear Log Utility Function

  • Research
  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

We consider the extension of a tractable NEG model with a quasi-linear log utility function to continuous space, and investigate the behavior of its solution mathematically. The model is a system of nonlinear integral and differential equations describing the market equilibrium and the time evolution of the spatial distribution of population density. A unique global solution is constructed, and a homogeneous stationary solution with an evenly distributed population is shown to be unstable. Furthermore, it is shown numerically that the destabilized homogeneous stationary solution eventually forms spiky spatial distributions. The number of the spikes decreases as the preference for variety increases or the transport cost decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Fujita et al. (1999) have introduced the core-periphery model in a one-dimensional periodic continuous space. An early analytical treatment of the original core-periphery model in a continuous space has been given by Tabata et al. (2013). Tabata and Eshima (2023) develop an analytical method for the continuous space model.

  2. See Zeidler (1986, pp. 82–83).

  3. See Zeidler (1986, pp. 80–81).

  4. Here, the functions \(\Delta \lambda\), \(\Delta w\), \(\Delta G\), and \(\Delta \omega\) on S are identified with the corresponding periodic functions \(\Delta \tilde{\lambda }\), \(\Delta \tilde{w}\), \(\Delta \tilde{G}\), and \(\Delta \tilde{\omega }\) on \([-\pi , \pi ]\), respectively (See Sect. 2.3).

  5. Under the periodic boundary condition, applying the trapezoidal rule is equivalent to approximating the integral by a simple Riemann sum as described in (45) below.

  6. Since both time and space variables are real numbers in the model, they must be discretized by a sufficiently large number of nodes in the numerical computations. We think that the size between nodes should be on the order of \(10^{-2}\) at most in both time and space, so we set \(I=256\) (then \(dx\fallingdotseq 0.025\)) and \(dt=0.01\).

  7. For simplicity, we set \(F=1.0\) and \(\gamma =1.0\). The reason for setting \(\Lambda =1.0\) and \(\Phi =10.0\) is to satisfy condition (22) and (44). In addition, \(\mu =0.6\) is a value used in Fujita et al. (Fujita et al. 1999, p. 93).

  8. In the figures, the actual computed values are indicated by the blue dots. The dashed lines are just the interpolation for the plot.

  9. The observation that the non-uniform (at least stable) stationary solutions are limited to spiky ones would be a robust property that does not depend on any particular parameter. In fact, in addition to the results presented below, numerical simulations have also been performed for \(\mu =0.2\) and \(\mu =0.4\). Still, none of them, including those shown here, led to non-spiky steady-state solutions.

  10. We adopt \(\sigma =5.0\) because this is the value used in Fujita et al. (Fujita et al. 1999, p.93).

  11. We adopt \(\tau =0.2\) to have a common setting with the case of varying the value of \(\tau\) (Fig. 3).

References

  • Akamatsu T, Takayama Y, Ikeda K (2012) Spatial discounting, Fourier, and racetrack economy: A recipe for the analysis of spatial agglomeration models. J Econ Dyn Control 36(11):1729–1759

    Article  Google Scholar 

  • Chincarini L, Asherie N (2008) An analytical model for the formation of economic clusters. Reg Sci Urban Econ 38(3):252–270

    Article  Google Scholar 

  • Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. A E R 67(3):297–308

    Google Scholar 

  • Forslid R, Ottaviano GI (2003) An analytically solvable core-periphery model. J Econ Geogr 3(3):229–240

    Article  Google Scholar 

  • Fujita M, Thisse JF (2013) Economics of Agglomeration: Cities, Industrial Location, and Globalization. Cambridge University Press

    Book  Google Scholar 

  • Fujita M, Krugman P, Venables A (1999) The Spatial Economy: Cities, Regions, and International Trade. MIT Press

    Book  Google Scholar 

  • Gaspar JM, Castro SBSD, da Silva JC (2018) Agglomeration patterns in a multi-regional economy without income effects. Econ Theor 66(4):863–899

    Article  Google Scholar 

  • Ioannides Y (2012) From Neighborhoods to Nations: The Economics of Social Interactions. Princeton University Press

    Book  Google Scholar 

  • Krugman P (1991) Increasing returns and economic geography. J Polit Econ 99(3):483–499

    Article  Google Scholar 

  • Matsuyama K (1995) Comments on Paul R. Krugman, ’Complexity and Emergent Structure in the International Economy’. In “New Directions in Trade Theory” University of Michigan Press, pp. 52–69

  • Matsuyama K (1996) Why are there rich and poor countries? Symmetry-breaking in the world economy. J Jpn Int Econ 10(4):419–439

    Article  Google Scholar 

  • Ohtake K, Yagi A (2022) Pointwise agglomeration in continuous racetrack model. Port Econ J 21(2):211–235

    Article  Google Scholar 

  • Ottaviano GI, Tabuchi T, Thisse JF (2002) Agglomeration and trade revisited. Int Econ Rev 43(2):409–435

    Article  Google Scholar 

  • Papageorgiou YY, Smith TR (1983) Agglomeration as local instability of spatially uniform steady-states. Econometrica 1109–1119

  • Pflüger M (2004) A simple, analytically solvable, Chamberlinian agglomeration model. Reg Sci Uuban Econ 34(5):565–573

    Article  Google Scholar 

  • Satou Y, Tabuchi T (2011) Yamamoto (2011) The Spatial Economy (in Japanese). Yuhikaku Publishing Co., Ltd

    Google Scholar 

  • Tabata M, Eshima N (2023) Approximation of a continuous core-periphery model by core-periphery models with a large number of small regions. Netw Spat Econ 23(1):223–283

    Article  Google Scholar 

  • Tabata M, Eshima N, Sakai Y, Takagi I (2013) An extension of Krugman’s core-periphery model to the case of a continuous domain: existence and uniqueness of solutions of a system of nonlinear integral equations in spatial economics. Nonlinear Anal Real World Appl 14(6):2116–2132

    Article  Google Scholar 

  • Zeidler E (1986) Nonlinear Functional Analysis and its Applications, vol. 1: Fixed-point Theorems, Springer-Verlag. Translated by Peter R. Wadsack

  • Zeng DZ, Takatsuka H (2016) Spatial Economics (in Japanese), TOYO KEIZAI INC

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number JP19H01799.

Author information

Authors and Affiliations

Authors

Contributions

Single author (Kensuke Ohtake).

Corresponding author

Correspondence to Kensuke Ohtake.

Ethics declarations

Competing Interests

This work was supported by JSPS KAKENHI Grant Number JP19H01799.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to the proofs omitted in the main text. Recall that \(T_1\) and \(T_2\) are the lower and upper bounds of T(xy) in (6), respectively.

1.1 Proof of Theorem 2

Lemma 1

The following inequalities

$$\begin{aligned}&\left( \frac{F}{\Lambda +b}\right) ^{\frac{1}{\sigma -1}}T_1 \le \Vert G\left( \lambda (t)\right) \Vert _\infty \le \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_2, \end{aligned}$$
(46)
$$\begin{aligned}&\begin{aligned}\Vert w\left( \lambda (t)\right) \Vert _\infty&\le \frac{\mu }{\sigma }\left( \frac{T_2}{T_1}\right) ^{\sigma -1}\frac{\Phi +\Lambda +b}{\Lambda -b}, \\ \Vert \omega \left( \lambda (t)\right) \Vert _\infty&\le \frac{\mu }{\sigma }\left( \frac{T_2}{T_1}\right) ^{\sigma -1}\frac{\Phi +\Lambda +b}{\Lambda -b} \end{aligned} \end{aligned}$$
(47)
$$\begin{aligned}&+ \mu \max \left\{ \left| \ln \left[ \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_1\right] \right| , \left| \ln \left[ \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_2\right] \right| \right\} \end{aligned}$$
(48)

hold for the operators (26), (27), and (28).

Proof of Lemma 1

Let us first observe that any \(\lambda\) such that \(\left\| \lambda (t)-\lambda _0\right\| _{L^1}\le b\) satisfies

$$\begin{aligned} 0<\Lambda -b\le \left\| \lambda (t)\right\| _{L^1}\le \Lambda +b. \end{aligned}$$
(49)

Then, from (26) and (49), it follows that

$$\begin{aligned} \begin{aligned} F^{\frac{1}{\sigma -1}}T_1\left( \Lambda +b\right) ^{\frac{1}{1-\sigma }}\le \left| G(\lambda (t))(x)\right| \le F^{\frac{1}{\sigma -1}}T_2\left( \Lambda -b\right) ^{\frac{1}{1-\sigma }}, \end{aligned} \end{aligned}$$

which immediately yield (46). It follows from (46), (27), and (49) that

$$\begin{aligned} \left| w(\lambda (t))(x)\right|&\le \frac{\mu }{\sigma F}T_1^{1-\sigma }\left[ \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_2\right] ^{\sigma -1}\left( \Phi +\Lambda +b\right) , \end{aligned}$$

which immediately yields (47). It follows from (46) and (47) that

$$\begin{aligned} \left| \omega (x)\right|&\le \left| w(x)\right| + \mu \left| \ln G(x)\right| ,\\&\le \frac{\mu }{\sigma }\left( \frac{T_2}{T_1}\right) ^{\sigma -1}\frac{\Phi +\Lambda +b}{\Lambda -b}\\&\quad {5\,mm}+ \mu \max \left\{ \left| \ln \left[ \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_1\right] \right| , \left| \ln \left[ \left( \frac{F}{\Lambda -b}\right) ^{\frac{1}{\sigma -1}}T_2\right] \right| \right\} , \end{aligned}$$

which immediately gives (48).

By (29) and (49), we have that

$$\begin{aligned} \left\| \Psi \left( \lambda (t)\right) \right\| _{L^1}&= \gamma \int _{\mathcal {M}}\left| \left[ \omega (\lambda (t))(x)-\frac{1}{\Lambda }\int _{\mathcal {M}}\omega (\lambda (t))(y)\lambda (y) dy\right] \lambda (x)\right| dx\\&\le \gamma \left\| \omega (\lambda (t))\right\| _\infty \left( \Lambda +b\right) \left( 1+\frac{\Lambda +b}{\Lambda }\right) . \end{aligned}$$

Together with (48), this completes the proof.\(\square\)

1.2 Proof of Theorem 3

Firstly, we show that G is Lipschitz continuous. For \(\lambda _1,\lambda _2\in Q\), let us define

$$g_i(x):= \frac{1}{F}\int _{\mathcal {M}}\left| \lambda _i(y)\right| T(x,y)^{1-\sigma }dy,~i=1,2$$

so that \(G\left( \lambda _i\right) (x) = g_i(x)^{\frac{1}{1-\sigma }}\). Then, based on the mean-value theorem in a Banach space, we obtain

$$\begin{aligned} \left\| G\left( \lambda _1\right) -G\left( \lambda _2\right) \right\| _\infty \le \mathcal {C}\left\| g_1-g_2\right\| _\infty , \end{aligned}$$
(50)

where \(\mathcal {C}=\frac{F^{\frac{\sigma }{1-\sigma }}T_2^{\sigma }(\Lambda -b)^{\frac{\sigma }{1-\sigma }}}{\sigma -1}\). Then, we see that

$$\begin{aligned} \begin{aligned} \left\| g_1-g_2\right\| _\infty&=\max _{x\in \mathcal {M}}\left| \frac{1}{F}\int _{\mathcal {M}}\left( |\lambda _1(y)|-|\lambda _2(y)|\right) T(x,y)^{1-\sigma }dy\right| \\&\le \frac{T_1^{1-\sigma }}{F}\int _{\mathcal {M}}\left| \left| \lambda _1(y)\right| -\left| \lambda _2(y)\right| \right| dy\\&\le \frac{T_1^{1-\sigma }}{F}\int _{\mathcal {M}}\left| \lambda _1(y)-\lambda _2(y)\right| dy= \frac{T_1^{1-\sigma }}{F} \left\| \lambda _1-\lambda _2\right\| _{L^1}. \end{aligned} \end{aligned}$$
(51)

From (50) and (51), we have

$$\begin{aligned} \left\| G\left( \lambda _1\right) -G\left( \lambda _2\right) \right\| _\infty \le \mathcal {L}_G \left\| \lambda _1-\lambda _2\right\| _\infty , \end{aligned}$$
(52)

where \(\mathcal {L}_G>0\) is a constant.

Secondly, we show that w is Lipschitz continuous.

$$\begin{aligned} \begin{aligned} \Vert w(\lambda _1)-w(\lambda _2)\Vert _\infty&= \max _{x\in \mathcal {M}}\left| w(\lambda _1)(x)-w(\lambda _2)(x)\right| \\&= \max _{x\in \mathcal {M}}\left| \frac{\mu }{\sigma F}\int _{\mathcal {M}}\left( \phi (y)+\left| \lambda _1(y)\right| \right) G(\lambda _1)(y)^{\sigma -1}T(x,y)^{1-\sigma }dy\right. \\&\quad\left. -\frac{\mu }{\sigma F}\int _{\mathcal {M}}\left( \phi (y)+\left| \lambda _2(y)\right| \right) G(\lambda _2)(y)^{\sigma -1}T(x,y)^{1-\sigma }dy\right| \\&\le \frac{\mu }{\sigma F}T_1^{1-\sigma }\left( \Phi +\left\| \lambda _1\right\| _{L^1}\right) \left\| G(\lambda _1)^{\sigma -1}-G(\lambda _2)^{\sigma -1}\right\| _\infty \\&\quad+ \frac{\mu }{\sigma F}T_1^{1-\sigma }\left\| G^{\sigma -1}\right\| _\infty \left\| \lambda _1-\lambda _2\right\| _{L^1} \\&\le \frac{\mu }{\sigma F}T_1^{1-\sigma }\left( \Phi +\Lambda +b\right) \left\| G(\lambda _1)^{\sigma -1}-G(\lambda _2)^{\sigma -1}\right\| _\infty \\&\quad+ \frac{\mu }{\sigma }\left( \frac{T_2}{T_1}\right) ^{\sigma -1}\frac{1}{\Lambda -b}\left\| \lambda _1-\lambda _2\right\| _{L^1} \end{aligned} \end{aligned}$$
(53)

Here, (46) and (49) are used in the last deformation. Then, by the mean-value theorem and (46), we obtain

$$\begin{aligned} \left\| G(\lambda _1)^{\sigma -1}-G(\lambda _2)^{\sigma -1}\right\| _\infty \le \mathcal {C}\left\| G(\lambda _1)-G(\lambda _2)\right\| _\infty , \end{aligned}$$
(54)

where

$$\mathcal {C} = \left\{ \begin{aligned}&(\sigma -1)\left( \frac{F}{\Lambda -b}\right) ^{\frac{\sigma -2}{\sigma -1}}T_2^{\sigma -2},~~~\textrm{if}~\sigma -2\ge 0\\&(\sigma -1)\left( \frac{F}{\Lambda -b}\right) ^{\frac{\sigma -2}{\sigma -1}}T_1^{\sigma -2},~~~\textrm{if}~\sigma -2 <0. \end{aligned} \right.$$

From (53) and (54), we obtain

$$\begin{aligned} \left\| w(\lambda _1)-w(\lambda _2)\right\| _\infty \le \mathcal {L}_w \left\| \lambda _1-\lambda _2\right\| _\infty , \end{aligned}$$
(55)

where \(\mathcal {L}_w>0\) is a constant.

Thirdly, we show that \(\omega\) is Lipschitz continuous. By the mean-value theorem and (46), we obtain

$$\begin{aligned} \left\| \ln G(\lambda _1)-\ln G(\lambda _2)\right\| _\infty \le \left( \frac{\Lambda -b}{F}\right) ^{\frac{1}{\sigma -1}}T_1\left\| G(\lambda _1) - G(\lambda _2)\right\| _\infty \end{aligned}$$
(56)

It follows from (55) and (56) that

$$\begin{aligned} \begin{aligned} \left\| \omega (\lambda _1)-\omega (\lambda _2)\right\| _\infty&\le \left\| w(\lambda _1)-w(\lambda _2)\right\| _\infty + \mu \left\| \ln G(\lambda _1)- \ln G(\lambda _2)\right\| _\infty \\&\le \mathcal {L}_{\omega } \Vert \lambda _1-\lambda _2\Vert _{L^1} \end{aligned} \end{aligned}$$
(57)

where \(\mathcal {L}_\omega >0\) is a constant.

We are now able to show the Lipschitz continuity of \(\Psi (\lambda )\). By (48) and (49), we see that

$$\begin{aligned} \begin{aligned} \left\| \Psi (\lambda _1)-\Psi (\lambda _2)\right\| _{L^1}&= \gamma \int _{\mathcal {M}}\left| \omega (\lambda _1)(x)\lambda _1(x) - \frac{1}{\Lambda }\int _\mathcal {M}\omega (\lambda _1)(y)\lambda _1(y)dy\cdot \lambda _1(x)\right. \\&\quad \left. -\omega (\lambda _2)(x)\lambda _2(x) + \frac{1}{\Lambda }\int _\mathcal {M}\omega (\lambda _2)(y)\lambda _2(y)dy\cdot \lambda _2(x)\right| dx \\&\le 2\gamma \left\| \omega \right\| _\infty \left\| \lambda _1-\lambda _2\right\| _{L^1} \\&\quad + \gamma (\Lambda +b)^2\left\| \omega (\lambda _1)-\omega (\lambda _2)\right\| _\infty \end{aligned} \end{aligned}$$
(58)

Thus, (57) and (58) complete the proof.\(\square\)

1.3 Proof of Theorem 6

For any \(\lambda \in L^1_\Lambda\), discussion similar to that in the proof of Theorem 2 but now with \(\left\| \lambda \right\| _{L^1}=\Lambda\) instead of (49) completes the proof.\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtake, K. A Continuous Space Model of New Economic Geography with a Quasi-Linear Log Utility Function. Netw Spat Econ 23, 905–930 (2023). https://doi.org/10.1007/s11067-023-09604-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-023-09604-0

Keywords

JEL Classification

Navigation