Skip to main content

Advertisement

Log in

Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. We develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget in the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahn K, Rakha H (2008) The effects of route choice decisions on vehicle energy consumption and emissions. Transp Res Part D: Transp Environ 13(3):151–167

    Article  Google Scholar 

  • Ahn K, Rakha H, Trani A, Van Aerde M (2002) Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J Transp Eng 128(2):182–190

    Article  Google Scholar 

  • Aziz HMA (2014) Integrating pro-environmental behavior with transportation network modeling: User and system level strategies, implementation, and evaluation. Doctoral dissertation, Purdue University, West Lafayette, Indiana, USA

  • Aziz HMA, Ukkusuri S (2013) Tradable emissions credits for personal travel: a market-based approach to achieve air quality standards. Int J Adv Eng Sci Appl Math 5(2-3):145–157

    Article  Google Scholar 

  • Aziz HMA, Ukkusuri SV (2012) Integration of environmental objectives in a system optimal dynamic traffic assignment model. Comput-Aided Civ Infrastruct Eng 27(7):494–511

    Article  Google Scholar 

  • Aziz HMA, Ukkusuri SV, Romero J (2015) Understanding short-term travel behavior under personal mobility credit allowance scheme using experimental economics. Transp Res Part D: Transp Environ 36:121–137

    Article  Google Scholar 

  • Barth M, Boriboonsomsin K (2008) Real-world carbon dioxide impacts of traffic congestion. Transp Res Record: J Transp Res Board 2058:163–171

    Article  Google Scholar 

  • Barth M, Scora G, Younglove T (2004) Modal emissions model for heavy-duty diesel vehicles. Transp Res Record: J Transp Res Board 1880:10–20

    Article  Google Scholar 

  • Bottrill C (2006) Understanding dtqs and pcas. Environmental Change Institute/UKERC Working Paper

  • Bristow AL, Wardman M, Zanni AM, Chintakayala PK (2010) Public acceptability of personal carbon trading and carbon tax. Ecol Econ 69(9):1824–1837

    Article  Google Scholar 

  • Burtraw D (2002) Markets for clean air: the u.s. acid rain program: A. denny ellerman, paul l. joskow, richard schmalensee, juan-pablo montero, elizabeth m. bailey, cambridge, uk: Cambridge university press, 2000. Reg Sci Urban Econ 32(1):139–144

    Article  Google Scholar 

  • Capstick SB, Lewis A (2010) Effects of personal carbon allowances on decision-making: evidence from an experimental simulation. Clim Pol 10(4):369–384

    Article  Google Scholar 

  • Carey M, Balijepalli C, Watling D (2015) Extending the cell transmission model to multiple lanes and lane-changing. Networks and Spatial Economics 15 (3):507–535

    Article  Google Scholar 

  • Chen L, Yang H (2012) Managing congestion and emissions in road networks with tolls and rebates. Transp Res B Methodol 46(8):933–948

    Article  Google Scholar 

  • Coase RH (1960) The problem of social cost. Journal of Law and Economics 3 (ArticleType: research-article / Full publication date: Oct., 1960 / Copyright 1960 The University of Chicago)

  • Connection TLE (2009) Defra’s pre-feasibility study into personal carbon trading-a missed opportunity

  • Daganzo CF (1994) The cell transmission model: a simple dynamic representation of highway traffic. Transp Res B 28(4):269–287

    Article  Google Scholar 

  • Daganzo CF (1995) The cell transmission model, part ii: Network traffic. Transp Res B 29(2):79–93

    Article  Google Scholar 

  • Dales J (1968) Pollution, property, and prices. University of Toronto Press, Toronto

    Google Scholar 

  • DEFRA (2008) Synthesis report on the findings from defras pre-feasibility study into personal carbon trading. Department of Environment Food, and Rural Affairs

  • Dresner S, Ekins P (2004) The distributional impacts of economic instruments to limit greenhouse gas emissions from transport. Policy Studies Institute, UK

    Google Scholar 

  • DTA (2011) Dynamic traffic assignment: A primer. Transp Res Circular Report:C153

  • EIA (2014) Annual Energy Outlook (2014) US Energy Information Administration. US Department of Energy, Washington

    Google Scholar 

  • Eyre N (2010) Policing carbon: design and enforcement options for personal carbon trading. Clim Pol 10(4):432–446

    Article  Google Scholar 

  • Fawcett T (2010) Personal carbon trading: A policy ahead of its time Energy Policy 38(11):6868–6876

    Article  Google Scholar 

  • Fawcett T (2012) Personal carbon trading: is now the right time Carbon Manage 3(3):283–291

    Article  Google Scholar 

  • Fawcett T, Parag Y (2010) An introduction to personal carbon trading. Clim Pol 10(4):329–338

    Article  Google Scholar 

  • Fleming D (1997) Tradable quotas: using information technology to cap national carbon emissions. Eur Environ 7(5):139–148

    Article  Google Scholar 

  • Fleming D, Chamberlin S (2011) Teqs(tradable energy quotas): A policy framework for peak oil and climate change. London: All-Party Parliamentary Group on Peak Oil, and The Lean Economy Connection

  • Gardner LM, Duell M, Waller ST (2013) A framework for evaluating the role of electric vehicles in transportation network infrastructure under travel demand variability. Transp Res A Policy Pract 49(0):76–90

    Article  Google Scholar 

  • Grayling T, Gibbs T (2006) Tailpipe trading: how to include road transport in the eu emissions trading scheme (eu ets). Institute for Public Policy Research, LowCVP Low Carbon Road Transport Challenge

  • Han L, Ukkusuri S, Doan K (2011) Complementarity formulations for the cell transmission model based dynamic user equilibrium with departure time choice, elastic demand and user heterogeneity. Transp Res B Methodol 45(10):1749–1767

    Article  Google Scholar 

  • Harwatt H, Tight M, Bristow AL, Guhnemann A (2011) Personal carbon trading and fuel price increases in the transport sector: an exploratory study of public response in the uk. European Transport Trasporti Europei 47:47–70

  • Hearn DW, Ramana MV (1998) Solving congestion toll pricing models. In: Marcotte NS P (ed) Equilibrium and Advanced Transportation Modeling., Kluwer Academic Publishers, Norwell

  • Hillman M, Fawcett T (2008) Rajan SC. St Martin’s Griffin, How we can save the planet: Preventing global climate catastrophe

    Google Scholar 

  • Howell RA (2012) Living with a carbon allowance: The experiences of carbon rationing action groups and implications for policy. Energy Policy 41(0):250–258

    Article  Google Scholar 

  • Keay-Bright S, Fawcett T (2005) Taxing and trading: Debating options for carbon reduction, UK Energy Research Centre Meeting Report

  • Keppens M, Vereeck L (2003) The design and effects of a tradable fuel permit system. In: PROCEEDINGS OF THE EUROPEAN TRANSPORT CONFERENCE (ETC) 2003 HELD 8-10 OCTOBER 2003, STRASBOURG, FRANCE

  • Kitthamkesorn S, Chen A, Xu X, Ryu S (2016) Modeling mode and route similarities in network equilibrium problem with go-green modes. Netw Spatial Econ 16(1):33–60

    Article  Google Scholar 

  • Kockelman KM, Kalmanje S (2005) Credit-based congestion pricing: a policy proposal and the publics response. Transp Res A Policy Pract 39(79):671–690

    Article  Google Scholar 

  • Lin J, Chen Q, Kawamura K (2016a) Sustainability si: logistics cost and environmental impact analyses of urban delivery consolidation strategies. Netw Spatial Econ 16(1):227–253

    Article  Google Scholar 

  • Lin X, Tampère C M, Viti F, Immers B (2016b) The cost of environmental constraints in traffic networks: assessing the loss of optimality. Netw Spatial Econ 16 (1):349–369

    Article  Google Scholar 

  • Ma R, Ban X, Pang JS, Liu HX (2015) Submission to the dta2012 special issue: Approximating time delays in solving continuous-time dynamic user equilibria. Netw Spatial Econ 15(3):443–463. Jeff

    Article  Google Scholar 

  • Mascia M, Hu S, Han K, North R, Poppel M, Theunis J, Beckx C, Litzenberger M (2016) Impact of traffic management on black carbon emissions: a microsimulation study. Netw Spatial Econ:1–23

  • Merchant DK, Nemhauser GL (1978) A model and an algorithm for the dynamic traffic assignment problems. Transplant Sci 12(3):183–199

    Article  Google Scholar 

  • Montgomery WD (1972) Markets in licenses and efficient pollution control programs. J Econ Theory 5(3):395–418

    Article  Google Scholar 

  • Nagurney A, Zhang D (2001) Dynamics of a transportation pollution permit system with stability analysis and computations. Transp Res Part D: Transp Environ 6(4):243–268

    Article  Google Scholar 

  • Nezamuddin N, Boyles SD (2015) A continuous due algorithm using the link transmission model. Netw Spatial Econ 15(3):465–483

    Article  Google Scholar 

  • Nie Y (2012) Transaction costs and tradable mobility credits. Transp Res B Methodol 46(1):189–203

    Article  Google Scholar 

  • Nie Y, Yin Y (2013) Managing rush hour travel choices with tradable credit scheme. Transp Res B Methodol 50(0):1–19

    Article  Google Scholar 

  • Niemeier D, Gould G, Karner A, Hixson M, Bachmann B, Okma C, Lang Z, Heres Del Valle D (2008) Rethinking downstream regulation: California’s opportunity to engage households in reducing greenhouse gases. Energy Policy 36 (9):3436–3447

    Article  Google Scholar 

  • Parag Y, Strickland D (2010) Personal carbon trading: A radical policy option for reducing emissions from the domestic sector. Environ Sci Policy for Sustainable Dev 53(1):29–37

    Article  Google Scholar 

  • Perrels A (2010) User response and equity considerations regarding emission cap-and-trade schemes for travel. Energy Effic 3(2):149–165

    Article  Google Scholar 

  • Ramadurai G (2009) Novel dynamic user equilibrium models: analytical formulations, multi-dimensional choice, and an efficient algorithm. PhD thesis, Department of civil and environmental engineering, Rensselaer Polytechnic Institute (Troy, NY)

  • Ramadurai G, Ukkusuri S (2007) Dynamic traffic equilibrium: Theoretical and experimental network game results in single-bottleneck model. Transp Res Record: J Trans Res Board 2029:1–13

    Article  Google Scholar 

  • Raux C, Marlot G (2005) A system of tradable co2 permits applied to fuel consumption by motorists. Transp Policy 12(3):255–265

    Article  Google Scholar 

  • Roberts S, Thumim J (2006) A rough guide to individual carbon trading: The ideas, the issues and the next steps, report to defra

  • Sloboden J, Alexiadis V, Chiu YC, Nava E (2012) Traffic analysis toolbox volume xiv: Guidebook on the utilization of dynamic traffic assignment in modeling. US Department of Transportation Federal Highway Administration FHWA-HOP-13-015

  • Starkey R (2008) Allocating emissions rights: Are equal shares, fair shares. Tyndall Centre for Climate Change Research, Manchester

    Google Scholar 

  • Starkey R (2012a) Personal carbon trading: A critical survey: Part 1: Equity. Ecol Econ 73(0):7–18

    Article  Google Scholar 

  • Starkey R (2012b) Personal carbon trading: A critical survey part 2: Efficiency and effectiveness. Ecol Econ 73(0):19–28

    Article  Google Scholar 

  • Starkey R, Anderson K (2005) Domestic tradable quotas: A policy instrument for reducing greenhouse gas emissions from energy use. Tyndall Centre for Climate Change Research Norwich, UK

    Google Scholar 

  • Szeto WY (2013) Cell-based dynamic equilibrium models. Adv Dyn Netw Model Complex Transp Syst 2:163–192

    Article  Google Scholar 

  • Thumim J, White V (2008) Distributional impacts of personal carbon trading: A report to the department for environment, food and rural affairs. Centre for Sust Energ:1

  • Tietenberg T (2003) The tradable-permits approach to protecting the commons: Lessons for climate change. Oxf Rev Econ Policy 19(3):400–419

    Article  Google Scholar 

  • Ukkusuri SV, Han L, Doan K (2012) Dynamic user equilibrium with a path based cell transmission model for general traffic networks. Transp Res B Methodol 46(10):1657–1684

    Article  Google Scholar 

  • USDOT R (2011) The value of travel time savings: Departmental guidance for conducting economic evaluations (revision 2). US Department of Transportation (http://ostpxwebdotgov/policy/reportshtm)

  • Verhoef E, Nijkamp P, Rietveld P (1997) Tradeable permits: their potential in the regulation of road transport externalities. Environ Planning B: Planning and Des 24(4):527–548

    Article  Google Scholar 

  • Verhoef ET, Small KA (2004) Product differentiation on roads: constrained congestion pricing with heterogeneous users. J Transp Econ Policy 38(1):127–156

    Google Scholar 

  • Wadud Z (2011) Personal tradable carbon permits for road transport: Why, why not and who wins Transp Res A Policy Pract 45(10):1052–1065

    Article  Google Scholar 

  • Yang H, Bell MG (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev A transnat Transdisciplinary J 18 (3):257–278

    Google Scholar 

  • Yang H, Huang HJ (2004) The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Transp Res B Methodol 38(1):1–15

    Article  Google Scholar 

  • Yang H, Wang X (2011) Managing network mobility with tradable credits. Transp Res B Methodol 45(3):580–594

    Article  Google Scholar 

  • Yin Y, Lawphongpanich S (2006) Internalizing emission externality on road networks. Transp Res Part D: Transp Environ 11(4):292–301

    Article  Google Scholar 

  • Zhan X, Ukkusuri SV (2014) Multi-user class, simultaneous route and departure time choice dynamic traffic assignment with an embedded spatial queuing model. 5th International Symposium on Dynamic Traffic Assignment Salerno:Italy

  • Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34(1):37–49

    Article  Google Scholar 

Download references

Acknowledgments

This material is partly based upon work supported by the National Science Foundation under Grant No. 1017933. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Ukkusuri.

Additional information

This work has been initiated and completed at Purdue University, West Lafayette when the first author was completing his graduate studies. This work does not represent any view of Oak Ridge National Laboratory managed by UT-Battelle for the Department of Energy. This work did not have any kind of financial support from the Oak Ridge National Laboratory managed by UT-Battelle for the department of Energy

Appendices

Appendix A: Appendix Cell transmission model

The CTM divides each link of the network into finite number of homogeneous cells. Each cell has a length at least equal to the distance traveled in a single time interval at free flow speed. Also, the time horizon is finite and discretized into a number of intervals.

  1. (a)

    Notations and symbols:

Indices:

  • w: index of origin-destination pairs, \(w \in \mathbb {W}:\{1, \dots , W\}\);

  • p: index of paths, \(p \in \mathbb {P}:\{1,\dots , P\}\);

  • i, j, k: index of cells;

  • t: index of discrete time intervals,

  • m: index of user group, \(m \in \mathbb {M}:\{1,\dots , M\}\).

Parameters:

  • \({\alpha _{1}^{m}}\): unit cost of travel time for user class m;

  • \({\alpha _{2}^{m}}\): unit cost of early arrival for user class m;

  • \({\alpha _{3}^{m}}\): unit cost of late arrival for user class m; where \({\alpha _{2}^{m}}<{\alpha _{1}^{m}}<{\alpha _{3}^{m}}\);

  • t w: preferred arrival time for O-D pair w (this is same for all user classes); \({\beta _{T}^{m}}\): Estimated parameter for travel time cost in the generalized cost function for class m;

  • \({\beta _{C}^{m}}\): Estimated parameter for carbon cost in the generalized cost function for class m;

  • \({\beta _{R}^{m}}\): Estimated parameter for the effect of remaining carbon budget for class m;

  • \({\beta _{H}^{m}}\): Estimated parameter for the effect of available money to spend in the carbon market for class m;

  • d w, m: total demand from O-D pair w for class m;

  • ς: infinitesimal flow to avoid zero denominator;

  • t e : maximum departure time (loading time);

  • t f : maximum time horizon (network clearance time);

  • N i: jam density of cell i;

  • Q i: flow capacity out of cell i;

  • δ: ratio of backward to forward shockwave propagation.

Sets:

  • C: set of cells;

  • C O : set of ordinary cells;

  • C R : set of source cells;

  • C S : set of sink cells;

  • C D : set of diverging cells;

  • C M : set of merging cells;

  • E: set of links or cell-connectors;

  • E O : set of ordinary links;

  • E D : set of diverging links;

  • E M : set of merging links;

  • \({\Gamma }^{-1}_{i}\): set of predecessors of cell i;

  • Γ i : set of successors of cell i;

  • M: set of all user classes;

  • W: set of all O-D pairs;

  • P w: set of paths for O-D pair w;

  • P: set of all the paths, P = ∪ wW P w,

  • T e : set of all departure time intervals, \( T \triangleq \{0,\cdots ,t_{e}\}\)

  • T f : set of all time intervals, \( T_{f} \triangleq \{0,\cdots ,t_{f}\}\).

Variables:

  • \(x^{i,m}_{p,t}\): cell occupancy of cell i at time t for the flow on path pi for user class m,

  • \(y^{i,j,m}_{p,t}\): flow from cell i to cell j at time t for the flow on path p ∋ (i, j) for user class m,

  • \(\bar {x}^{i}_{t}\): aggregate cell occupancy of cell i at time t, i.e., \( \bar {x}^{i}_{t} =\\ \hspace *{45pt}\displaystyle {\sum\limits_{\forall p \ni i}, m \in M} x^{i, m}_{p,t}, \, \forall \, i \in C; t \in T_{f}\),

  • \(\bar {y}^{i, j, m}_{t}\): aggregate flow from cell i to j at time t, i.e., \(\bar {y}^{i,j}_{t} =\\ \hspace *{45pt}\displaystyle {\sum\limits_{\forall p \in P}, m} y^{i,j, m}_{p,t}, \,\forall \, (i,j) \in E; t \in T_{f} \),

  • \(\tilde {x}^{i,j}_{t}\): aggregate cell occupancy at diverging cell i at time t proceeding to cell j,

  • \(r_{p,t}^{m}\): departure rate at time t for the flow using path p for user class m,

  • T T p, t : travel time for the flow using path p at time t,

  • \(\tau _{p,t,t^{\prime }}\): auxiliary variable for maximum travel time estimation,

  • \(\hat {\tau }_{p,t,t^{\prime }}\): auxiliary variable for maximum travel time estimation: \(\hat {\tau }_{p,t,t^{\prime }} = 1 - \tau _{p,t,t^{\prime }}\),

  • \({\theta }_{p,t,t^{\prime }}\): auxiliary variable for maximum travel time estimation,

  • \({\nu }_{p,t,t^{\prime }}\): auxiliary variable for average travel time estimation.

An ordered pair of cells (i, j) represents a link and an ordered collection of links or an ordered collection of cells represents a path (similar to (Ukkusuri et al. 2012)). Also, a cell ip implies that path p must contain cell i and a link (i, j) ∈ p implies that path p must go through link (i, j).

  1. (b)

    Initialization: At the beginning of the simulation (t = 0), the cell occupancies are set to zero for all paths and for all user classes in the network.

    $$\begin{array}{@{}rcl@{}} &&x^{i, m}_{p,0} = 0, \quad \quad \forall i \in C, p \in P, m \in M; \end{array} $$
    (20)
    $$\begin{array}{@{}rcl@{}} &&y^{i,j,m}_{p,0} = 0, \quad \quad \forall (i,j) \in E, p \in P, m \in M. \end{array} $$
    (21)

Source cells (C R ):

During network loading vehicles get into the source cells according to the demand pattern \(r_{p,t}^{m}\). Based on the capacity (in and outflow rate), vehicles move to the next cell. For each path pP containing source cells iC R , the occupancy updates can be expressed as:

$$\begin{array}{@{}rcl@{}} x^{i, m}_{p,t} &=& r^{m}_{p,t-1} + x^{i, m}_{p,t-1} - y^{i, j, m}_{p, t-1}, \quad \forall j \in {\Gamma}_{i}, t = \{1,\dots, t_{e} + 1 \}, m \in M, \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} x^{i, m}_{p,t} &=& x^{i, m}_{p, t-1} - y^{i, j, m}_{p,t-1}, \quad \forall j \in {\Gamma}_{i}, t=\{t_{e}+2,\dots, t_{f}\}, m \in M. \end{array} $$
(23)

Now, each O-D pair has unique demand values for each user class mM of the network. The cumulative departure rate should be equal to the total demand for a OD pair.

$$\begin{array}{@{}rcl@{}} \sum\limits_{p \in P^{w}}\sum\limits_{t=0}^{t_{e}} r_{p,t}^{m} &=& {d_{w}^{m}}, \quad \forall w \in W, m \in M; \end{array} $$
(24)
$$\begin{array}{@{}rcl@{}} \sum\limits_{m \in M}{d_{w}^{m}} &=& d_{w}, \quad \forall w \in W. \end{array} $$
(25)

Ordinary cells (C O ): An Ordinary cell, iC O has one incoming link and one outgoing link. The following equation updates the cell occupancy of an ordinary cell for a user class mM:

$$ x^{i, m}_{p,t} = x^{i, m}_{p,t-1} + y^{k, i, m}_{p,t-1} - y^{i,j, m}_{p,t-1}, \quad \forall p \ni i, k \in {\Gamma}^{-1}_{i}, j \in {\Gamma}_{i}, t=\{1,\dots, t_{f}\}. $$
(26)

Also, if i not part of path p, then \(x^{i, m}_{p,t} = 0\). Diverging-merging cells (C D ): The occupancy of any diverging and merging cell, iC D C M for a user class, \(m \in \mathbb {M}\) is updated updated as follows:

$$ x^{i, m}_{p,t} = x^{i, m}_{p,t-1} + \sum\limits_{k \in {\Gamma}^{-1}_{i}} y^{k,i, m}_{p,t-1} - \sum\limits_{j \in {\Gamma}_{i}}y^{i,j, m} _{p,t-1}, \quad \forall p \ni k,i,j; k \in {\Gamma}^{-1}_{i}; j \in {\Gamma}_{i}; t=\{1,\dots, t_{f}\}. $$
(27)

Sink cells (C S ): A sink cell iC S has limited in-flow capacity Q s, however the storage capacity is unlimited (N s). The cell occupancy \(x^{i, m}_{p,t}\) equals with the cumulative arrivals of path p in the period from 0 to t for user class \(m \in \mathbb {M}\).

$$ x^{i, m}_{p,t} = x^{i, m}_{p,t-1} + y^{k,i, m}_{p,t-1}, \quad \forall i \in C_{S}; p \ni i; k \in {\Gamma}^{-1}_{i}; t=\{1,\dots, t_{f}\}. $$
(28)

Ordinary links (E O ): At the aggregate flow level, we have:

$$ \bar{y}^{i,j}_{t} = \min\left( \bar{x}^{i}_{t}, Q^{i}, Q^{j}, \delta(N^{j}-\bar{x}^{j}_{t}) \right) \ \ \ \forall (i,j) \in E_{O}; t=\{1,\cdots, t_{f}\} $$
(29)

At the disaggregate level, we use the proportion of path-based cell occupancy \(x^{i,m}_{p,t}\) and aggregate cell occupancy \(\bar {x}^{i}_{t}\) to determine the path flow \(y^{i,j,m}_{p,t}\)

$$ y^{i,j,m}_{p,t} = \min\left( \bar{x}^{i}_{t}, Q^{i}, Q^{j}, \delta(N^{j}-\bar{x}^{j}_{t})\right) \times \frac{x^{i,m}_{p,t}} {\bar{x}^{i}_{t} + \sigma} \ \ \ \ \ \forall (i,j) \in E_{O}; p \ni i; j \in {\Gamma}_{i}; t=\{1,\cdots, t_{f}\} $$
(30)

Here ς > 0 is an infinitesimal number used to make sure that the denominator is different from 0.

Diverging links (E D ): The updates are similar to Ukkusuri et al. (2012) and aggregate occupancies are computed as follows:

$$ \tilde{x}^{i,j}_{t} = \displaystyle{ \sum\limits_{\forall p \ni (i,j), m \in M} x^{i,m}_{p,t}} \ \ \ \ \ \forall \, i \in C_{D}; j \in {\Gamma}_{i}; t=\{1,\cdots, t_{f}\} $$
(31)
$$ \bar{x}^{i}_{t} = \sum\limits_{j \in {\Gamma}_{i}} \tilde{x}^{i,j}_{t} \ \ \ \ \ \forall i \in C_{D}; t \in \{1,\cdots,t_{f}\}, $$
(32)

For the diverging flows: For all iC D ;j ∈ Γ i ;t = {1,⋯ ,t f },

$$ \bar{y}^{i,j}_{t} = \min(\tilde{x}^{i,j}_{t}, Q^{j}, \delta(N^{j}-\bar{x}^{j}_{t})) \times \min \left( 1, \frac{Q^{i}}{{\sum}_{j^{\prime} \in {\Gamma}_{i}} \left( \min(\tilde{x}^{i,j^{\prime}}_{t}, Q^{j^{\prime}}, \delta(N^{j^{\prime}}-\bar{x}^{j^{\prime}}_{t}))\right)+\mu}\right) $$
(33)

(Ukkusuri et al. 2012) use the proportional rule to obtain the flow for each path from each O-D pair:

$$ y^{i,j, m}_{p,t} = \bar{y}^{i,j}_{t} \times \frac{x^{i,m}_{p,t}} {\tilde{x}^{i,j}_{t}+\sigma} \ \ \ \ \ \forall \, i \in C_{D}; p \ni i; j \in {\Gamma}_{i}; t \in \{1,\cdots,t_{f}\} $$
(34)

Merging links (E D ): The updating for merging links are computed by the following equations:

For all \(i \in C_{M}; k \in {\Gamma }^{-1}_{i}; t=\{1,\cdots , t_{f}\}\),

$$ \bar{y}^{k,i}_{t} = \min(Q^{k},\bar{x}^{k}_{t}) \times \min\left( 1,\frac{\min{\left( Q^{i}, \delta(N^{i} - \bar{x}^{i}_{t})\right)}}{{\sum}_{k^{\prime} \in {\Gamma}^{-1}_{i}} \left( \min(Q^{k^{\prime}},\bar{x}^{k^{\prime}}_{t})\right)+\sigma}\right). $$
(35)

The flow for each path of each O-D pair can be computed as:

$$ y^{k,i,m}_{p,t} = \bar{y}^{k,i}_{t} \times \frac{x^{k,m}_{p,t}} {\bar{x}^{k}_{t}+\sigma} \ \ \ \ \ \forall \, i \in C_{M}; p \ni i; k \in {\Gamma}^{-1}_{i}; t \in \{1,\cdots,t_{f}\} $$
(36)

Appendix B: Travel time estimation using CTM

Ramadurai (2009) and (Han et al. 2011) provide details on computing average travel time within the path-based CTM model. For the completeness of our discussion we mention the equations from Ukkusuri et al. (2012).

$$\begin{array}{@{}rcl@{}} \nu_{p,t,t^{\prime}} &=& \max \left( 0, \, \displaystyle{\sum\limits_{h = 0}^{t}} r_{p,h} - x_{p,t^{\prime}}^{s} \right), \\ && \forall p \in P; s \in p \cap C_{S}; t = \{0, \cdots, t_{e}\}; t^{\prime} =\{ t,\cdots,t_{f}\} \end{array} $$
(37)
$$\begin{array}{@{}rcl@{}} TT_{p,0} &=& \frac{\displaystyle{\sum\limits_{h = 0}^{T_{f}- 1}} (\nu_{p,0,h} - \nu_{p,0,h+1})h}{\displaystyle{r_{p,0}+\mu}}, \forall p \in P \end{array} $$
(38)
$$\begin{array}{@{}rcl@{}} TT_{p,t} &=& \frac{\displaystyle{\sum\limits_{h = t}^{T_{f} - 1}} (\nu_{p,t,h} - \nu_{p,t,h+1} + \nu_{p,t-1,h+1} - \nu_{p,t-1,h})(h-t)} {\displaystyle {r_{p,t} + \mu}},\\ && \forall p \in P; s \in p \cap C_{S}; t = 0, \cdots, T . \end{array} $$
(39)

Users from all classes experience the same travel time. Therefore, the average travel time computation is not specific for a class.

$$\begin{array}{@{}rcl@{}} r_{p,h} &=& \sum\limits_{m \in M} r_{p,t}^{m}, \end{array} $$
(40)
$$\begin{array}{@{}rcl@{}} x_{p, t^{\prime}}^{s} &=& \sum\limits_{m \in M}x_{p,t}^{s,m}. \end{array} $$
(41)

Now, the max operator can be replaced by the following complementarity conditions:

$$\begin{array}{@{}rcl@{}} && 0 \, \leq \, \nu_{p,t,t^{\prime}} \, \perp \, \nu_{p,t,t^{\prime}} - \left( \displaystyle{\sum\limits_{h = 0}^{t}} r_{p,h} - x_{p,t^{\prime}}^{s}\right) \geq 0 \\ && \forall p \in P; t = \{0, \cdots, t_{e}\}; t^{\prime} = \{t,\cdots,t_{f}\}. \end{array} $$
(42)

Algorithm step (Zhan and Ukkusuri 2014)

  • Step 0: Set counter k = 0. Initialize a feasible departure rate.

  • Step 1: Run the simulation C T M(γ k) and compute T C(γ k), C C(γ k), G C(γ k).

  • Step 2: Decompose \(\gamma ^{k}=({\gamma ^{k}_{1}}, {\gamma ^{k}_{2}}, ..., {\gamma ^{k}_{m}})^{T}\).

  • Step 3: Find the λ k(γ k) that ensures most number of user classes and OD pairs satisfy: \(||T_{i}({\gamma ^{k}_{i}})-T_{i}(\gamma ^{k-1}_{i})||\leq \alpha ||{\gamma ^{k}_{i}}- \gamma ^{k-1}_{i})||\), in which \(T_{i}({\gamma ^{k}_{i}})=Pr_{{\Omega }_{i}}[{\gamma ^{k}_{i}}-\lambda ^{k} (\gamma ^{k}) {GC}_{i}(\gamma ^{k})]\)

  • Step 4: Update departure rate \({\gamma ^{k}_{i}}\) using mapping T i only for those user classes and OD pairs that satisfy the condition in Step 3. For others that not satisfied, set \({\gamma ^{k}_{j}}= \gamma ^{k-1}_{j}\).

  • Step 5: If none of the user classes and OD pairs are found satisfy condition in Step 3, set \({\gamma ^{k}_{j}}= \gamma ^{k-1}_{j}, \lambda ^{k}(\gamma ^{k})=\lambda ^{k-1}(\gamma ^{k-1})/2\).

  • Step 6: If ||z γ k|| ≤ 𝜖, terminate the algorithm, γ = z . Otherwise γ k+1 = γ k, Set k = k + 1, go to step 1.

Appendix C: DUE Results

1.1 D.1. DUE-1 with base case: Sioux-Falls

Fig. 17
figure 17

PMCA-DUE-1 results base case: no carbon cap

1.2 D.2. DUE-2 with 2 %reduction: Sioux-Falls

Fig. 18
figure 18

PMCA-DUE-2 results: 2 % reduction from base case

1.3 D.3. DUE-3 with 2 % reduction: Sioux-Falls

Fig. 19
figure 19

PMCA-DUE-3 results: 2 % reduction from base case

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H.M.A., Ukkusuri, S.V. & Zhan, X. Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks. Netw Spat Econ 17, 505–545 (2017). https://doi.org/10.1007/s11067-016-9334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-016-9334-x

Keywords

Navigation