Skip to main content

Advertisement

Log in

The Mechanism of α2 adrenoreceptor-dependent Modulation of Neurotransmitter Release at the Neuromuscular Junctions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

α2-Adrenoreceptors (ARs) are main Gi-protein coupled autoreceptors in sympathetic nerve terminals and targets for dexmedetomidine (DEX), a widely used sedative. We hypothesize that α2-ARs are also potent regulators of neuromuscular transmission via G protein-gated inwardly rectifying potassium (GIRK) channels. Using extracellular microelectrode recording of postsynaptic potentials, we found DEX-induced inhibition of spontaneous and evoked neurotransmitter release as well as desynchronization of evoked exocytotic events in the mouse diaphragm neuromuscular junction. These effects were suppressed by SKF-86,466, a selective α2-AR antagonist. An activator of GIRK channels ML297 had the same effects on neurotransmitter release as DEX. By contrast, inhibition of GIRK channels with tertiapin-Q prevented the action of DEX on evoked neurotransmitter release, but not on spontaneous exocytosis. The synaptic vesicle exocytosis is strongly dependent on Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), which can be negatively regulated via α2-AR – GIRK channel axis. Indeed, inhibition of P/Q-, L-, N- or R-type VGCCs prevented the inhibitory action of DEX on evoked neurotransmitter release; antagonists of P/Q- and N-type channels also suppressed the DEX-mediated desynchronization of evoked exocytotic events. Furthermore, inhibition of P/Q-, L- or N-type VGCCs precluded the frequency decrease of spontaneous exocytosis upon DEX application. Thus, α2-ARs acting via GIRK channels and VGCCs (mainly, P/Q- and N-types) exert inhibitory effect on the neuromuscular communication by attenuating and desynchronizing evoked exocytosis. In addition, α2-ARs can suppress spontaneous exocytosis through GIRK channel-independent, but VGCC-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All mentioned data are represented in the main manuscript figures and supplementary figures. Other additional data will be made available on reasonable request.

Abbreviations

AR:

Adrenoceptor

DEX:

Dexmedetomidine

EPP:

End-plate potential

GIRK:

Channel, G Protein-gated inwardly rectifying potassium channel

MEPP:

Miniature end-plate potential

NMJ:

Neuromuscular junction

nAChR:

Nicotinic acetylcholine receptor

TPQ:

Tertiapin-Q

VGCC:

Voltage-gated Ca2+ channel

References

  1. Wang ZM, Messi ML, Rodrigues ACZ, Delbono O (2022) Skeletal muscle sympathetic denervation disrupts the neuromuscular junction postterminal organization: a single-cell quantitative approach. Mol Cell Neurosci 120:103730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dmitrieva SA, Vologin SG, Tsentsevitsky AN, Arkhipov AY, Khuzakhmetova VF, Sibgatullina GV, Bukharaeva EA (2023) Sympathetic innervation and endogenous catecholamines in neuromuscular preparations of muscles with different functional profiles. Biochem (Mosc) 88:364–373

    Article  CAS  Google Scholar 

  3. Delbono O, Rodrigues ACZ, Bonilla HJ, Messi ML (2021) The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 67:101305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan MM, Lustrino D, Silveira WA, Wild F, Straka T, Issop Y, O’Connor E, Cox D, Reischl M, Marquardt T, Labeit D, Labeit S, Benoit E, Molgo J, Lochmuller H, Witzemann V, Kettelhut IC, Navegantes LC, Pozzan T, Rudolf R (2016) Sympathetic innervation controls homeostasis of neuromuscular junctions in health and Disease. Proc Natl Acad Sci U S A 113:746–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA (2022) Adrenergic receptors control frequency-dependent switching of the exocytosis mode between full-collapse and kiss-and-run in murine motor nerve terminal. Life Sci 296:120433

    Article  CAS  PubMed  Google Scholar 

  6. Straka T, Vita V, Prokshi K, Horner SJ, Khan MM, Pirazzini M, Williams MPI, Hafner M, Zaglia T, Rudolf R (2018) Postnatal Development and Distribution of Sympathetic Innervation in mouse skeletal muscle. Int J Mol Sci 19

  7. Bukharaeva E, Khuzakhmetova V, Dmitrieva S, Tsentsevitsky A (2021) Adrenoceptors modulate cholinergic synaptic transmission at the Neuromuscular Junction. Int J Mol Sci 22

  8. Wang ZM, Messi ML, Grinevich V, Budygin E, Delbono O (2020) Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo. Mol Cell Neurosci 109:103563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsentsevitsky A, Nurullin L, Tyapkina O, Bukharaeva E (2020) Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors. Mol Cell Neurosci 108:103550

    Article  CAS  PubMed  Google Scholar 

  10. Wang ZM, Rodrigues ACZ, Messi ML, Delbono O (2020) Aging blunts sympathetic Neuron Regulation of motoneurons synaptic vesicle release mediated by beta1- and alpha2B-Adrenergic receptors in geriatric mice. J Gerontol A Biol Sci Med Sci 75:1473–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clausen L, Cossins J, Beeson D (2018) Beta-2 adrenergic receptor agonists enhance AChR Clustering in C2C12 myotubes: implications for Therapy of Myasthenic disorders. J Neuromuscul Dis 5:231–240

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li S, Sun B, Nilsson MI, Bird A, Tarnopolsky MA, Thurberg BL, Bali D, Koeberl DD (2013) Adjunctive beta2-agonists reverse neuromuscular involvement in murine pompe Disease. FASEB J 27:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ghazanfari N, Morsch M, Tse N, Reddel SW, Phillips WD (2014) Effects of the ss2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS ONE 9:e87840

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bartus RT, Betourne A, Basile A, Peterson BL, Glass J, Boulis NM (2016) beta2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic Lateral Sclerosis (ALS). Neurobiol Dis 85:11–24

    Article  CAS  PubMed  Google Scholar 

  15. McMacken GM, Spendiff S, Whittaker RG, O’Connor E, Howarth RM, Boczonadi V, Horvath R, Slater CR, Lochmuller H (2019) Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome. Hum Mol Genet 28:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez Cruz PM, Cossins J, Cheung J, Maxwell S, Jayawant S, Herbst R, Waithe D, Kornev AP, Palace J, Beeson D (2020) Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Hum Mutat 41:619–631

    Article  CAS  PubMed  Google Scholar 

  17. Breuer T, Bleilevens C, Rossaint R, Marx G, Gehrenkemper J, Dierksen H, Delpierre A, Weis J, Gayan-Ramirez G, Bruells CS (2018) Dexmedetomidine impairs diaphragm function and increases oxidative stress but does not aggravate diaphragmatic atrophy in mechanically ventilated rats. Anesthesiology 128:784–795

    Article  CAS  PubMed  Google Scholar 

  18. Cheng W, Wu Z, Zhang J, Ren W (2023) Effect of dexmedetomidine on tourniquet-induced skeletal muscle injury. Rev Assoc Med Bras (1992) 69:228–232

    Article  PubMed  Google Scholar 

  19. Liu M, Liu Y, Li X, Pei M, Han M, Qi F (2022) Dexmedetomidine inhibits abnormal muscle hypertrophy of myofascial trigger points via TNF-alpha/ NF-kappaB signaling pathway in rats. Front Pharmacol 13:1031804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haouzi P, Tubbs N (2022) Effects of fentanyl overdose-induced muscle rigidity and dexmedetomidine on respiratory mechanics and pulmonary gas exchange in sedated rats. J Appl Physiol (1985) 132:1407–1422

    Article  CAS  PubMed  Google Scholar 

  21. Kundra TS, Thimmarayappa A, Dhananjaya M, Manjunatha N (2018) Dexmedetomidine for prevention of skeletal muscle ischaemia-reperfusion injury in patients with chronic limb ischaemia undergoing aortobifemoral bypass Surgery: a prospective double-blind randomized controlled study. Ann Card Anaesth 21:22–25

    PubMed  PubMed Central  Google Scholar 

  22. Cheng M, Gao T, Xi F, Cao C, Chen Y, Zhao C, Li Q, Yu W (2017) Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats. PLoS ONE 12:e0174894

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li SP, Zhou XL, Zhao Y (2020) Sedation with midazolam worsens the diaphragm function than dexmedetomidine and propofol during mechanical ventilation in rats. Biomed Pharmacother 121:109405

    Article  CAS  PubMed  Google Scholar 

  24. Weinger MB, Partridge BL, Henry AF (1995) Dexmedetomidine does not modify the neuromuscular blocking action of vecuronium in the anaesthetized rat. Br J Anaesth 74:455–457

    Article  CAS  PubMed  Google Scholar 

  25. Sugita S, Fleming LL, Wood C, Vaughan SK, Gomes MP, Camargo W, Naves LA, Prado VF, Prado MA, Guatimosim C, Valdez G (2016) VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skelet Muscle 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM (2021) Early differences in membrane properties at the neuromuscular junctions of ALS model mice: effects of 25-hydroxycholesterol. Life Sci 273:119300

    Article  CAS  PubMed  Google Scholar 

  27. Nervo A, Calas AG, Nachon F, Krejci E (2019) Respiratory Failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology 424:152232

    Article  CAS  PubMed  Google Scholar 

  28. Cisterna BA, Vargas AA, Puebla C, Fernandez P, Escamilla R, Lagos CF, Matus MF, Vilos C, Cea LA, Barnafi E, Gaete H, Escobar DF, Cardozo CP, Saez JC (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11:1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kavalali ET (2020) Neuronal ca(2+) signalling at rest and during spontaneous neurotransmission. J Physiol 598:1649–1654

    Article  CAS  PubMed  Google Scholar 

  30. Homan AE, Meriney SD (2018) Active zone structure-function relationships at the neuromuscular junction. Synapse 72:e22057

    Article  PubMed  Google Scholar 

  31. Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM (2023) Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 318:121507

    Article  CAS  PubMed  Google Scholar 

  32. Khuzakhmetova V, Bukharaeva E (2021) Adrenaline facilitates synaptic transmission by Synchronizing Release of Acetylcholine Quanta from Motor nerve endings. Cell Mol Neurobiol 41:395–401

    Article  PubMed  Google Scholar 

  33. Del Castillo J, Katz B (1954) The effect of magnesium on the activity of motor nerve endings. J Physiol 124:553–559

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bukcharaeva EA, Kim KC, Moravec J, Nikolsky EE, Vyskocil F (1999) Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. J Physiol 517(Pt 3):879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsentsevitsky AN, Petrov AM (2022) L-type ca(2+) channels at Low External Calcium differentially regulate neurotransmitter release in proximal-distal compartments of the Frog Neuromuscular Junction. Cell Mol Neurobiol 42:2833–2847

    Article  CAS  PubMed  Google Scholar 

  36. Mikami M, Zhang Y, Kim B, Worgall TS, Groeben H, Emala CW (2017) Dexmedetomidine’s inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation. BMC Anesthesiol 17:52

    Article  PubMed  PubMed Central  Google Scholar 

  37. Protti DA, Uchitel OD (1993) Transmitter release and presynaptic Ca2 + currents blocked by the spider toxin omega-Aga-IVA. NeuroReport 5:333–336

    Article  CAS  PubMed  Google Scholar 

  38. Katz E, Ferro PA, Weisz G, Uchitel OD (1996) Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. J Physiol 497(Pt 3):687–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Protti DA, Szczupak L, Scornik FS, Uchitel OD (1991) Effect of omega-conotoxin GVIA on neurotransmitter release at the mouse neuromuscular junction. Brain Res 557:336–339

    Article  CAS  PubMed  Google Scholar 

  40. Almog M, Korngreen A (2009) Characterization of voltage-gated ca(2+) conductances in layer 5 neocortical pyramidal neurons from rats. PLoS ONE 4:e4841

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kaufmann K, Romaine I, Days E, Pascual C, Malik A, Yang L, Zou B, Du Y, Sliwoski G, Morrison RD, Denton J, Niswender CM, Daniels JS, Sulikowski GA, Xie XS, Lindsley CW, Weaver CD (2013) ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci 4:1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsentsevitsky AN, Khaziev EF, Kovyazina IV, Petrov AM (2022) GIRK channel as a versatile regulator of neurotransmitter release via L-type ca(2+) channel-dependent mechanism in the neuromuscular junction. Neuropharmacology 209:109021

    Article  CAS  PubMed  Google Scholar 

  43. Bukharaeva EA, Skorinkin AI, Samigullin DV, Petrov AM (2022) Presynaptic acetylcholine receptors modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular junctions. Biomedicines 10

  44. Bunemann M, Bucheler MM, Philipp M, Lohse MJ, Hein L (2001) Activation and deactivation kinetics of alpha 2A- and alpha 2 C-adrenergic receptor-activated G protein-activated inwardly rectifying K + channel currents. J Biol Chem 276:47512–47517

    Article  CAS  PubMed  Google Scholar 

  45. Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and Disease. Nat Rev Neurosci 11:301–315

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luo H, Marron Fernandez de Velasco E, Wickman K (2022) Neuronal G protein-gated K(+) channels. Am J Physiol Cell Physiol 323:C439–C460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K + channels. Biochemistry 37:13291–13299

    Article  CAS  PubMed  Google Scholar 

  48. Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE (2019) Disabling the Gbetagamma-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 12

  49. Dolphin AC (1998) Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506(Pt 1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Urbano FJ, Rosato-Siri MD, Uchitel OD (2002) Calcium channels involved in neurotransmitter release at adult, neonatal and P/Q-type deficient neuromuscular junctions (review). Mol Membr Biol 19:293–300

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, Tang J, Dong J, Zheng J (2015) Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons. Neuroscience 289:9–18

    Article  CAS  PubMed  Google Scholar 

  52. Cui LN, Sun N, Li BX, Wang LF, Zhang XY, Qiu DL, Chu CP (2020) Noradrenaline inhibits complex spikes activity via the presynaptic PKA signaling pathway in mouse cerebellar slices. Neurosci Lett 729:135008

    Article  CAS  PubMed  Google Scholar 

  53. Dong CJ, Guo Y, Ye Y, Hare WA (2014) Presynaptic inhibition by alpha2 receptor/adenylate cyclase/PDE4 complex at retinal rod bipolar synapse. J Neurosci 34:9432–9440

    Article  PubMed  PubMed Central  Google Scholar 

  54. DeBock F, Kurz J, Azad SC, Parsons CG, Hapfelmeier G, Zieglgansberger W, Rammes G (2003) Alpha2-adrenoreceptor activation inhibits LTP and LTD in the basolateral amygdala: involvement of Gi/o-protein-mediated modulation of Ca2+-channels and inwardly rectifying K+-channels in LTD. Eur J Neurosci 17:1411–1424

    Article  CAS  PubMed  Google Scholar 

  55. Conductier G, Nahon JL, Guyon A (2011) Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on alpha2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience 178:89–100

    Article  CAS  PubMed  Google Scholar 

  56. Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for alpha2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31:10671–10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsentsevitsky AN, Gafurova CR, Petrov AM (2022) K(ATP) channels as ROS-dependent modulator of neurotransmitter release at the neuromuscular junctions. Life Sci 310:121120

    Article  CAS  PubMed  Google Scholar 

  58. Crawford DC, Kavalali ET (2015) Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 16:338–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Melom JE, Akbergenova Y, Gavornik JP, Littleton JT (2013) Spontaneous and evoked release are independently regulated at individual active zones. J Neurosci 33:17253–17263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robitaille R (1998) Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21:847–855

    Article  CAS  PubMed  Google Scholar 

  61. Ladera C, del Carmen Godino M, Jose Cabanero M, Torres M, Watanabe M, Lujan R, Sanchez-Prieto J (2008) Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J Neurochem 107:1506–1517

    Article  CAS  PubMed  Google Scholar 

  62. Vazquez-Vazquez H, Gonzalez-Sandoval C, Vega AV, Arias-Montano JA, Barral J (2022) Histamine H(3) receptor activation modulates glutamate release in the Corticostriatal Synapse by acting at ca(V)2.1 (P/Q-Type) calcium channels and GIRK (K(IR)3) Potassium channels. Cell Mol Neurobiol 42:817–828

    Article  CAS  PubMed  Google Scholar 

  63. Guo J, Ikeda SR (2004) Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons. Mol Pharmacol 65:665–674

    Article  CAS  PubMed  Google Scholar 

  64. Ginebaugh SP, Badawi Y, Tarr TB, Meriney SD (2022) Neuromuscular Active Zone Structure and Function in Healthy and Lambert-Eaton Myasthenic Syndrome States. Biomolecules 12

  65. Nishimune H, Badawi Y, Mori S, Shigemoto K (2016) Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 6:27935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giovannini F, Sher E, Webster R, Boot J, Lang B (2002) Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions. Br J Pharmacol 136:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaja S, Van de Ven RC, Ferrari MD, Frants RR, Van den Maagdenberg AM, Plomp JJ (2006) Compensatory contribution of Cav2.3 channels to acetylcholine release at the neuromuscular junction of tottering mice. J Neurophysiol 95:2698–2704

    Article  CAS  PubMed  Google Scholar 

  68. Pardo NE, Hajela RK, Atchison WD (2006) Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2 + channels. J Pharmacol Exp Ther 319:1009–1020

    Article  CAS  PubMed  Google Scholar 

  69. Molina-Campos E, Xu Y, Atchison WD (2015) Age-dependent contribution of P/Q- and R-type Ca2 + channels to neuromuscular transmission in lethargic mice. J Pharmacol Exp Ther 352:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pagani R, Song M, McEnery M, Qin N, Tsien RW, Toro L, Stefani E, Uchitel OD (2004) Differential expression of alpha 1 and beta subunits of voltage dependent Ca2 + channel at the neuromuscular junction of normal and P/Q Ca2 + channel knockout mouse. Neuroscience 123:75–85

    Article  CAS  PubMed  Google Scholar 

  71. Todorov B, van de Ven RC, Kaja S, Broos LA, Verbeek SJ, Plomp JJ, Ferrari MD, Frants RR, van den Maagdenberg AM (2006) Conditional inactivation of the Cacna1a gene in transgenic mice. Genesis 44:589–594

    Article  CAS  PubMed  Google Scholar 

  72. Perissinotti PP, Giugovaz Tropper B, Uchitel OD (2008) L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction. Eur J Neurosci 27:1333–1344

    Article  PubMed  Google Scholar 

  73. Depetris RS, Nudler SI, Uchitel OD, Urbano FJ (2008) Altered synaptic synchrony in motor nerve terminals lacking P/Q-calcium channels. Synapse 62:466–471

    Article  CAS  PubMed  Google Scholar 

  74. Urbano FJ, Piedras-Renteria ES, Jun K, Shin HS, Uchitel OD, Tsien RW (2003) Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2 + channels. Proc Natl Acad Sci U S A 100:3491–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gilmanov IR, Samigullin DV, Vyskocil F, Nikolsky EE, Bukharaeva EA (2008) Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J Comput Neurosci 25:296–307

    Article  PubMed  Google Scholar 

  76. Wang X, Pinter MJ, Rich MM (2010) Ca2 + dependence of the binomial parameters p and n at the mouse neuromuscular junction. J Neurophysiol 103:659–666

    Article  CAS  PubMed  Google Scholar 

  77. Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, Kullmann DM, Volynski KE (2013) Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2 + channels. Nat Neurosci 16:1754–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL, Rorsman P, Braun M (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am J Physiol Endocrinol Metab 303:E1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuzhikandathil EV, Oxford GS (1999) Activation of human D3 dopamine receptor inhibits P/Q-type calcium channels and secretory activity in AtT-20 cells. J Neurosci 19:1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zamponi GW, Currie KP (2013) Regulation of ca(V)2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 1828:1629–1643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ANT, VFK were supported by assignment for Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences.

Funding

This work was supported by the by Russian Science Foundation, grant number [23-15-00124], https://www.rscf.ru/project/23-15-00124/.

Author information

Authors and Affiliations

Authors

Contributions

A.T. performed electrophysiological experiments, visualization, and data analysis. V.K. performed electrophysiological experiments. EB was responsible for conceptualization, methodology, project administration, supervision, writing, review & editing; AMP wrote the main text and was responsible for conceptualization, review & editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alexey M. Petrov.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All authors consent to publish the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsentsevitsky, A.N., Khuzakhmetova, V.F., Bukharaeva, E.A. et al. The Mechanism of α2 adrenoreceptor-dependent Modulation of Neurotransmitter Release at the Neuromuscular Junctions. Neurochem Res 49, 453–465 (2024). https://doi.org/10.1007/s11064-023-04052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04052-1

Keywords

Navigation