Skip to main content
Log in

Restraint Stress, Foot Shock and Corticosterone Differentially Alter Autophagy in the Rat Hippocampus, Basolateral Amygdala and Prefrontal Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Autophagy is a conserved lysosomal degradation process that has recently been found to be associated with stress-related psychological diseases. However, previous studies have yielded inconsistent results regarding the effects of various stress patterns on autophagy in different brain regions. This discrepancy may arise from differences in autophagy flux across nuclei, the type of stress experienced, and the timing of autophagy assessment after stress exposure. In this study, we assessed autophagy flux in the rat hippocampus (HPC), medial prefrontal cortex (mPFC), and basal lateral amygdala (BLA) by quantifying protein levels of p-ULK1, LC3-I, LC3-II, and p62 via Western blot analysis at 15 min, 30 min, and 60 min following various stress paradigms: restraint stress, foot shock, single corticosterone injection, and chronic corticosterone treatment. We found that: (1) hippocampal autophagy decreased within 1 h of restraint stress, foot shock, and corticosterone injection, except for a transient increase at 30 min after restraint stress; (2) autophagy increased 1 h after restraint stress and corticosterone injection but decreased 1 h after foot shock in mPFC; (3) In BLA, autophagy increased 1 h after foot shock and corticosterone injection but decreased 1 h after restraint stress; (4) Chronic corticosterone increased autophagy in mPFC and BLA but had no effects in HPC. These findings suggest that stress regulates autophagy in a brain region- and stressor-specific manner within 1 h after stress exposure, which may contribute to the development of stress-related psychological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Pereira L, Girardi JP, Bakovic M (2012) Forms, crosstalks, and the role of phospholipid biosynthesis in autophagy. Int J Cell Biol 2012:931956

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mizushima N (2009) Physiological functions of Autophagy. In: Levine B, Yoshimori T, Deretic V (eds) Autophagy in Infection and immunity. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 71–84

    Chapter  Google Scholar 

  3. Bagherniya M, Butler AE, Barreto GE, Sahebkar A (2018) The effect of fasting or calorie restriction on autophagy induction: a review of the literature. Ageing Res Rev 47:183–197

    Article  PubMed  Google Scholar 

  4. Ganley IG, Lamdu H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmisano NJ, Melendez A (2016) Detection of autophagy in Caenorhabditis elegans by western blotting analysis of LGG-1. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.prot086512

    Article  Google Scholar 

  6. Pierone BC, Pereira CA, Garcez ML, Kaster MP (2020) Stress and signaling pathways regulating autophagy: from behavioral models to psychiatric disorders. Exp Neurol 334:113485

    Article  CAS  PubMed  Google Scholar 

  7. von Majewski K, Kraus O, Rhein C, Lieb M, Erim Y, Rohleder N (2023) Acute stress responses of autonomous nervous system, HPA axis, and inflammatory system in posttraumatic stress disorder. Transl Psychiatry 13:36

    Article  Google Scholar 

  8. Alcocer-Gomez E, Casas-Barquero N, Nunez-Vasco J, Navarro-Pando JM, Bullon P (2017) Psychological status in depressive patients correlates with metabolic gene expression. CNS Neurosci Ther 23:843–845

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T (2014) Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 11:e1001755

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gassen NC, Rein T (2019) Is there a role of autophagy in depression and antidepressant action? Front Psychiatry 10:337

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scaini G, Barichello T, Fries GR, Kennon EA, Andrews T, Nix BR, Zunta-Soares G, Valvassori SS, Soares JC, Quevedo J (2019) TSPO upregulation in bipolar disorder and concomitant downregulation of mitophagic proteins and NLRP3 inflammasome activation. Neuropsychopharmacology 44:1291–1299

    Article  CAS  PubMed  Google Scholar 

  12. Jevtic G, Nikolic T, Mircic A, Stojkovic T, Velimirovic M, Trajkovic V, Markovic I, Trbovich AM, Radonjic NV, Petronijevic ND (2016) Mitochondrial impairment, apoptosis and autophagy in a rat brain as immediate and long-term effects of perinatal phencyclidine treatment - influence of restraint stress. Prog Neuropsychopharmacol Biol Psychiatry 66:87–96

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Bu H, Jiang Y, Sun G, Jiang R, Huang X, Duan H, Huang Z, Wu Q (2019) The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol Med Rep 20:2867–2874

    CAS  PubMed  Google Scholar 

  14. Zhang H, Shang Y, Xiao X, Yu M, Zhang T (2017) Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp Neurol 298:68–78

    Article  PubMed  Google Scholar 

  15. Wang M, Bi Y, Zeng S, Liu Y, Shao M, Liu K, Deng Y, Wen G, Sun X, Zeng P, Jing L, Lv Z (2019) Modified Xiaoyao San ameliorates depressive-like behaviors by triggering autophagosome formation to alleviate neuronal apoptosis. Biomed Pharmacother 111:1057–1065

    Article  PubMed  Google Scholar 

  16. Gulbins A, Schumacher F, Becker KA, Wilker B, Soddemann M, Boldrin F, Muller CP, Edwards MJ, Goodman M, Caldwell CC, Kleuser B, Kornhuber J, Szabo I, Gulbins E (2018) Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol Psychiatry 23:2324–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou R, Sun X, Li Y, Huang Q, Qu Y, Mu D, Li X (2019) Low-dose dexamethasone increases autophagy in cerebral cortical neurons of juvenile rats with sepsis associated encephalopathy. Neuroscience 419:83–99

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Zhou L, Zheng X, Liu W (2018) Effects of dexamethasone on autophagy and apoptosis in acute spinal cord injury. NeuroReport 29:1084–1091

    Article  CAS  PubMed  Google Scholar 

  19. Kavushansky A, Richter-Levin G (2006) Effects of stress and corticosterone on activity and plasticity in the amygdala. J Neurosci Res 84:1580–1587

    Article  CAS  PubMed  Google Scholar 

  20. Li JT, Li YH, Sun YX, Wang H, Liu X, Zhao YY, Wang HL, Su YA, Si TM (2019) Chronic mild corticosterone exposure during adolescence enhances behaviors and upregulates neuroplasticity-related proteins in rat hippocampus. Prog Neuro-Psychoph 89:400–411

    Article  CAS  Google Scholar 

  21. Gadberry TM, Goodman J, Packard MG (2022) Chronic corticosterone administration in adolescence enhances dorsolateral striatum-dependent learning in adulthood. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2022.970304

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fischer S, Zilcha-Mano S (2022) Why does psychotherapy work and for whom? Hormonal answers. Biomedicines 10:1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    Article  CAS  PubMed  Google Scholar 

  24. Orsetti M, Di Brisco F, Canonico PL, Genazzani AA, Ghi P (2008) Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression. Eur J Neurosci 27:2156–2164

    Article  CAS  PubMed  Google Scholar 

  25. Kim SH, Yu HS, Park S, Park HG, Ahn YM, Kang UG, Kim YS (2020) Electroconvulsive seizures induce autophagy by activating the AMPK signaling pathway in the rat frontal cortex. Int J Neuropsychopharmacol 23:42–52

    CAS  PubMed  Google Scholar 

  26. Kara NZ, Agam G, Anderson GW, Zitron N, Einat H (2017) Lack of effect of chronic ketamine administration on depression-like behavior and frontal cortex autophagy in female and male ICR mice. Behav Brain Res 317:576–580

    Article  CAS  PubMed  Google Scholar 

  27. Boyle LM (2013) A neuroplasticity hypothesis of chronic stress in the basolateral amygdala. Yale J Biol Med 86:117–125

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li K, Chen HS, Li D, Li HH, Wang J, Jia L, Wu PF, Long LH, Hu ZL, Chen JG, Wang F (2019) SAR405, a highly specific VPS34 inhibitor, disrupts auditory fear memory consolidation of mice via facilitation of inhibitory neurotransmission in basolateral amygdala. Biol Psychiatry 85:214–225

    Article  CAS  PubMed  Google Scholar 

  29. Wu ZM, Yang LH, Cui R, Ni GL, Wu FT, Liang Y (2017) Contribution of hippocampal 5-HT3 receptors in hippocampal autophagy and extinction of conditioned fear responses after a single prolonged stress exposure in rats. Cell Mol Neurobiol 37:595–606

    Article  CAS  PubMed  Google Scholar 

  30. Zheng S, Han F, Shi Y, Wen L, Han D (2017) Single-prolonged-stress-induced changes in autophagy-related proteins beclin-1, LC3, and p62 in the medial prefrontal cortex of rats with post-traumatic stress disorder. J Mol Neurosci 62:43–54

    Article  CAS  PubMed  Google Scholar 

  31. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (317602777, 82201597), and the Natural Science Foundation of Yunnan Province (202301AT070430).

Funding

This study was funded by National Natural Science Foundation of China (82201597, 31760277) and Natural Science Foundation of Yunnan Province (202301AT070430).

Author information

Authors and Affiliations

Authors

Contributions

YC and JZ designed the study; XZ, BC and ZL did the experiment; YC and JZ analyzed data, wrote and revised the manuscript.

Corresponding authors

Correspondence to Yanmei Chen or Jichuan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, X., Chu, B. et al. Restraint Stress, Foot Shock and Corticosterone Differentially Alter Autophagy in the Rat Hippocampus, Basolateral Amygdala and Prefrontal Cortex. Neurochem Res 49, 492–506 (2024). https://doi.org/10.1007/s11064-023-04048-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-023-04048-x

Keywords

Navigation