Skip to main content

Advertisement

Log in

Dark Rearing in the Visual Critical Period Causes Structural Changes in Myelinated Axons in the Adult Mouse Visual Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the maturation of neuronal circuits in the visual cortex. Although the formation and structural plasticity of the myelin sheaths on retinal ganglion cell axons modulate the visual function, the effects of dark rearing during the visual critical period on the structure of the retinal ganglion cell axons and their myelin sheaths are still unclear. To address this question, mice were reared in a dark box during the visual critical period and then normally reared to adulthood. We found that myelin sheaths on the retinal ganglion cell axons of dark-reared mice were thicker than those of normally reared mice in both the optic chiasm and optic nerve. Furthermore, whole-mount immunostaining with fluorescent axonal labeling and tissue clearing revealed that the myelin internodal length in dark-reared mice was shorter than that in normally reared mice in both the optic chiasm and optic nerve. These findings demonstrate that dark rearing during the visual critical period affects the morphology of myelin sheaths, shortens and thickens myelin sheaths in the visual pathway, despite the mice being reared in normal light/dark conditions after the dark rearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Raw data were generated at the Jichi Medical University. Datasets supporting the findings of this study are available from the corresponding authors on request.

References

  1. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    Article  CAS  PubMed  Google Scholar 

  2. Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hensch TK, Quinlan EM (2018) Critical periods in amblyopia. Vis Neurosci 35:E014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benevento LA, Bakkum BW, Port JD, Cohen RS (1992) The effects of dark-rearing on the electrophysiology of the rat visual cortex. Brain Res 572:198–207

    Article  CAS  PubMed  Google Scholar 

  5. Morales B, Choi SY, Kirkwood A (2002) Dark rearing alters the development of GABAergic transmission in visual cortex. J Neurosci 22:8084–8090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mower GD (1991) The effect of dark rearing on the time course of the critical period in cat visual cortex. Brain Res Dev Brain Res 58:151–158

    Article  CAS  PubMed  Google Scholar 

  7. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  8. Yang SM, Michel K, Jokhi V, Nedivi E, Arlotta P (2020) Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370

  9. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fletcher JL, Makowiecki K, Cullen CL, Young KM (2021) Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 118:14–23

    Article  CAS  PubMed  Google Scholar 

  11. Dangata YY, Findlater GS, Kaufman MH (1996) Postnatal development of the optic nerve in (C57BL x CBA)F1 hybrid mice: general changes in morphometric parameters. J Anat 189(Pt 1):117–125

    PubMed  PubMed Central  Google Scholar 

  12. Baba H, Akita H, Ishibashi T, Inoue Y, Nakahira K, Ikenaka K (1999) Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K(+) channel clustering. J Neurosci Res 58:752–764

    Article  CAS  PubMed  Google Scholar 

  13. Tasaki I (1939) THE ELECTRON-SALTATORY TRANSMISSION OF THE NERVE IMPULSE AND THE EFFECT OF NARCOSIS UPON THE NERVE FIBER. Am J Physiol 127:211–227

    Article  Google Scholar 

  14. Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31:362–373

    Article  PubMed  PubMed Central  Google Scholar 

  15. Etxeberria A, Hokanson KC, Dao DQ, Mayoral SR, Mei F, Redmond SA, Ullian EM, Chan JR (2016) Dynamic Modulation of Myelination in Response to Visual Stimuli Alters Optic Nerve Conduction Velocity. J Neurosci 36:6937–6948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gyllensten L, Malmfors T, Norrlin-Grettve M-L (1966) Developmental and functional alterations in the fiber composition of the optic nerve in visually deprived mice. J Comp Neurol 128:413–418

    Article  Google Scholar 

  17. Fukui Y, Hayasaka S, Bedi KS, Ozaki HS, Takeuchi Y (1991) Quantitative study of the development of the optic nerve in rats reared in the dark during early postnatal life. J Anat 174:37–47

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore CL, Kalil R, Richards W (1976) Development of myelination in optic tract of the cat. J Comp Neurol 165:125–136

    Article  CAS  PubMed  Google Scholar 

  19. Osanai Y, Shimizu T, Mori T, Hatanaka N, Kimori Y, Kobayashi K, Koyama S, Yoshimura Y, Nambu A, Ikenaka K (2018) Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and input-deprived axonal activities in sensory deprived mouse models. Glia 66:2514–2525

    Article  PubMed  Google Scholar 

  20. Thai TQ, Nguyen HB, Saitoh S, Wu B, Saitoh Y, Shimo S, Elewa YH, Ichii O, Kon Y, Takaki T, Joh K, Ohno N (2016) Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy. Med Mol Morphol 49:154–162

    Article  PubMed  Google Scholar 

  21. Inagaki T, Fujiwara K, Shinohara Y, Azuma M, Yamazaki R, Mashima K, Sakamoto A, Yashiro T, Ohno N (2021) Perivascular macrophages produce type I collagen around cerebral small vessels under prolonged hypertension in rats. Histochem Cell Biol 155:503–512

    Article  CAS  PubMed  Google Scholar 

  22. Cameron EG, Xia X, Galvao J, Ashouri M, Kapiloff MS, Goldberg JL (2020) Optic Nerve Crush in Mice to Study Retinal Ganglion Cell Survival and Regeneration. Bio Protoc. 10(6):e3559

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sugimoto T, Fukuda Y, Wakakuwa K (1984) Quantitative analysis of a cross-sectional area of the optic nerve: a comparison between albino and pigmented rats. Exp Brain Res 54:266–274

    Article  CAS  PubMed  Google Scholar 

  24. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157

    Article  PubMed  Google Scholar 

  25. Osanai Y, Shimizu T, Mori T, Yoshimura Y, Hatanaka N, Nambu A, Kimori Y, Koyama S, Kobayashi K, Ikenaka K (2017) Rabies virus-mediated oligodendrocyte labeling reveals a single oligodendrocyte myelinates axons from distinct brain regions. Glia 65:93–105

    Article  PubMed  Google Scholar 

  26. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073

    Article  CAS  PubMed  Google Scholar 

  28. Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720

    Article  CAS  PubMed  Google Scholar 

  29. Sturrock RR (1980) Myelination of the mouse corpus callosum. Neuropathol Appl Neurobiol 6:415–420

    Article  CAS  PubMed  Google Scholar 

  30. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach PLoS One 4:e7754

    Article  PubMed  CAS  Google Scholar 

  31. Baker GE, Stryker MP (1990) Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets. Nature 344:342–345

    Article  CAS  PubMed  Google Scholar 

  32. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, Bujalka H, Gundlach AL, Richards LJ, Kilpatrick TJ, Merson TD, Emery B (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9:306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ueda H, Levine JM, Miller RH, Trapp BD (1999) Rat optic nerve oligodendrocytes develop in the absence of viable retinal ganglion cell axons. J Cell Biol 146:1365–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy KM, Mancini SJ, Clayworth KV, Arbabi K, Beshara S (2020) Experience-Dependent Changes in Myelin Basic Protein Expression in Adult Visual and Somatosensory Cortex. Front Cell Neurosci 14:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayoral SR, Etxeberria A, Shen YA, Chan JR (2018) Initiation of CNS Myelination in the Optic Nerve Is Dependent on Axon Caliber. Cell Rep 25(544–550):e543

    Google Scholar 

  37. Costa AR, Pinto-Costa R, Sousa SC, Sousa MM (2018) The regulation of axon diameter: from axonal circumferential contractility to activity-dependent axon swelling. Front Mol Neurosci 11:319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, Ni L, Yang T, Marton RM, Pasca SP, Greenberg ME, Longo FM, Monje M (2019) Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103(250–265):e258

    Google Scholar 

  39. Osso LA, Rankin KA, Chan JR (2021) Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron 109:3619

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka T, Ohno N, Osanai Y, Saitoh S, Thai TQ, Nishimura K, Shinjo T, Takemura S, Tatsumi K, Wanaka A (2021) Large-scale electron microscopic volume imaging of interfascicular oligodendrocytes in the mouse corpus callosum. Glia 69:2488–2502

    Article  CAS  PubMed  Google Scholar 

  41. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD (2017) Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep 21:316–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hughes AN, Appel B (2020) Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci 23:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nemes-Baran AD, White DR, DeSilva TM (2020) Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep 32:108047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lezmy J, Arancibia-Carcamo IL, Quintela-Lopez T, Sherman DL, Brophy PJ, Attwell D (2021) Astrocyte Ca(2+)-evoked ATP release regulates myelinated axon excitability and conduction speed. Science 374:e2858

    Article  CAS  Google Scholar 

  46. Swire M, Assinck P, McNaughton PA, Lyons DA, Ffrench-Constant C, Livesey MR (2021) Oligodendrocyte HCN2 channels regulate myelin sheath length. J Neurosci 41:7954–7964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bakiri Y, Karadottir R, Cossell L, Attwell D (2011) Morphological and electrical properties of oligodendrocytes in the white matter of the corpus callosum and cerebellum. J Physiol 589:559–573

    Article  CAS  PubMed  Google Scholar 

  48. Richardson AG, McIntyre CC, Grill WM (2000) Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med Biol Eng Comput 38:438–446

    Article  CAS  PubMed  Google Scholar 

  49. Arancibia-Carcamo IL, Ford MC, Cossell L, Ishida K, Tohyama K, Attwell D (2017) Node of Ranvier length as a potential regulator of myelinated axon conduction speed. Elife. https://doi.org/10.7554/eLife.23329

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cullen CL, Pepper RE, Clutterbuck MT, Pitman KA, Oorschot V, Auderset L, Tang AD, Ramm G, Emery B, Rodger J, Jolivet RB, Young KM (2021) Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep 34:108641

    Article  CAS  PubMed  Google Scholar 

  51. Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalcin B, Anastasaki C, Mulinyawe SB, Ponnuswami A, Scheaffer S, Ma Y, Chang KC, Xia X, Toonen JA, Lennon JJ, Gibson EM, Huguenard JR, Liau LM, Goldberg JL, Monje M, Gutmann DH (2021) NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Jichi Medical University Young Investigator Award 2021 to Y.O., Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatric The 33rd research grants for young scientists to Y.O., Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 20K22691 and 21K15197 to Y.O., and 20K21506, 21H05241, 21H04786 and 20KK0170 to N.O., and a research grant from the National Center of Neurology and Psychiatry (No. 30-5, 3-5) to N.O. We thank the Jichi Medical University craft center for manufacturing the dark boxes.

Funding

Funding was provided by Japan Society for the Promotion of Science (Grant Nos.: 20K22691 and 21K15197 to Y.O., and 20K21506, 21H05241, 21H04786 and 20KK0170 to N.O.), by the National Center of Neurology and Psychiatry (Grant No.: 30-5, 3-5 to N.O.), by Kawano Masanori Memorial Public Interest Incorporated Foundation (The 33rd research grants for young scientists to Y.O.), and also by Jichi Medical University (Young Investigator Award 2021 to Y.O.)

Author information

Authors and Affiliations

Authors

Contributions

YO, YY, and NO contributed to the experimental design. YO, BB, RY, TK, and MY conducted the experiments. HM and KK prepared the viral vectors. YO and YS performed image processing. YO and NO wrote the paper.

Corresponding authors

Correspondence to Yasuyuki Osanai or Nobuhiko Ohno.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical Approval

All animal study designs and recombinant DNA experiment designs were approved by the Ethics Review Board of the Jichi Medical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osanai, Y., Battulga, B., Yamazaki, R. et al. Dark Rearing in the Visual Critical Period Causes Structural Changes in Myelinated Axons in the Adult Mouse Visual Pathway. Neurochem Res 47, 2815–2825 (2022). https://doi.org/10.1007/s11064-022-03689-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03689-8

Keywords

Navigation