Skip to main content

Advertisement

Log in

Shati/Nat8l Overexpression Improves Cognitive Decline by Upregulating Neuronal Trophic Factor in Alzheimer’s Disease Model Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a type of dementia characterized by the deposition of amyloid β, a causative protein of AD, in the brain. Shati/Nat8l, identified as a psychiatric disease related molecule, is a responsive enzyme of N-acetylaspartate (NAA) synthesis. In the hippocampi of AD patients and model mice, the NAA content and Shati/Nat8l expression were reported to be reduced. Having recently clarified the involvement of Shati/Nat8l in cognitive function, we examined the recovery effect of the hippocampal overexpression of Shati/Nat8l in AD model mice (5XFAD). Shati/Nat8l overexpression suppressed cognitive dysfunction without affecting the Aβ burden or number of NeuN-positive neurons. In addition, brain-derived neurotrophic factor mRNA was upregulated by Shati/Nat8l overexpression in 5XFAD mice. These results suggest that Shati/Nat8l overexpression prevents cognitive dysfunction in 5XFAD mice, indicating that Shati/Nat8l could be a therapeutic target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  2. Bateman RJ, Xiong CJ, Benzinger TLS, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804. https://doi.org/10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomita T, Iwatsubo T (2013) Structural biology of presenilins and signal peptide peptidases. J Biol Chem 288:14673–14680. https://doi.org/10.1074/jbc.R113.463281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P et al (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360:672–674. https://doi.org/10.1038/360672a0

    Article  CAS  PubMed  Google Scholar 

  5. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99. https://doi.org/10.1038/nature11283

    Article  CAS  PubMed  Google Scholar 

  6. Benilova I, Karran E, Strooper BD (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. https://doi.org/10.1038/nn.3028

    Article  CAS  PubMed  Google Scholar 

  7. Izuo N, Kasahara C, Murakami K, Kume T, Maeda M, Irie K et al (2017) A toxic conformer of Aβ42 with a turn at 22–23 is a novel therapeutic target for Alzheimer’s disease. Sci Rep 7:11811. https://doi.org/10.1038/s41598-017-11671-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al (2006) Intraneuronal β-Amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five Familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T (2012) Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci Rep 2:535. https://doi.org/10.1038/srep00535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuboyama T, Hirotsu K, Arai T, Yamasaki H, Tohda C (2017) Polygalae radix extract prevents axonal gegeneration and memory deficits in a transgenic mouse model of Alzheimer’s disease. Front Pharmacol 14(8):805. https://doi.org/10.3389/fphar.2017.00805

    Article  CAS  Google Scholar 

  11. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663. https://doi.org/10.1038/nn.3697

    Article  CAS  PubMed  Google Scholar 

  12. Izuo N, Murakami K, Fujihara Y, Maeda M, Saito T, Saido TC et al (2019) An App knock-in mouse inducing the formation of a toxic conformer of Aβ as a model for evaluating only oligomer-induced cognitive decline in Alzheimer’s disease. Biochem Biophys Res Commun 515:462–467. https://doi.org/10.1016/j.bbrc.2019.05.131

    Article  CAS  PubMed  Google Scholar 

  13. Niwa M, Nitta A, Mizoguchi H, Ito Y, Noda Y, Nagai T et al (2007) A Novel molecule “Shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J Neurosci 27:7604–7615. https://doi.org/10.1523/JNEUROSCI.1575-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme a metabolism in the CNS. J Neurosci 27:7604–7615. https://doi.org/10.1016/j.brainres.2010.04.008

    Article  CAS  Google Scholar 

  15. Moffett JR, Arun P, Ariyannur PS, Namboodiri AMA (2013) N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenergy 5:11. https://doi.org/10.3389/fnene.2013.00011

    Article  CAS  Google Scholar 

  16. Haddar M, Uno K, Azuma K, Muramatsu SI, Nitta A (2020) Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice. Addict Biol 25:e12749. https://doi.org/10.1111/adb.12749

    Article  PubMed  Google Scholar 

  17. Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S et al (2017) Striatal N-acetylaspartate synthetase Shati/Nat8l regulates depression-like behaviors via mGluR3-mediated serotonergic suppression in mice. Int J Neuropsychopharmacol 20:1027–1035. https://doi.org/10.1093/ijnp/pyx078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumi K, Uno K, Noike H, Tomohiro T, Hatanaka Y, Furukawa-Hibi Y et al (2017) Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 7:16872. https://doi.org/10.1038/s41598-017-17151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP (2005) Hippocampal metabolic abnormalities in mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 384:23–28. https://doi.org/10.1016/j.neulet.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Tan L, Wang HF, Liu Y, Yin RH, Wang WY et al (2015) Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 46:1049–1070. https://doi.org/10.3233/JAD-143225

    Article  CAS  PubMed  Google Scholar 

  21. Zaroff S, Leone P, Markov V, Francis JS (2015) Transcriptional regulation of N-acetylaspartate metabolism in the 5xFAD model of Alzheimer’s disease: evidence for neuron-glia communication during energetic crisis. Mol Cell Neurosci 65:143–152. https://doi.org/10.1016/j.mcn.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu S (2013) Systemic delivery of tyrosine-mutant AAV vectors results in rodent transduction of neurons in adult mice. Biomed Res Int 2013:974819. https://doi.org/10.1155/2013/974819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W (2010) Retinoid X receptor gamma control of affective behaviors involves dopaminergic signaling mice. Neuron 66:908–920

    Article  CAS  Google Scholar 

  24. Frankin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, compact, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  25. Fu K, Miyamoto Y, Sumi K, Saika E, Muramatsu SI, Uno K et al (2017) Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit. PLoS ONE 12:e0189006. https://doi.org/10.1371/journal.pone.0189006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimura R, Devi L, Ohno M (2010) Partial reduction of BACE1 improves synaptic plasticity, recent and remote memories in Alzheimer’s disease transgenic mice. J Neurochem 113:248–261. https://doi.org/10.1111/j.1471-4159.2010.06608.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hongpaisan J, Sun MK, Alkon DL (2011) PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31:630–643. https://doi.org/10.1523/JNEUROSCI.5209-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miyanishi H, Muramatsu S, Nitta A (2021) Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice epigenetic regulation. Neuropsycopharmacology. https://doi.org/10.1038/s41386-021-01033-2

    Article  Google Scholar 

  29. Schuman EM (1999) Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 9:105–109. https://doi.org/10.1016/s0959-4388(99)80013-0

    Article  CAS  PubMed  Google Scholar 

  30. Lessmann V, Gottmann K, Heumann R (1994) BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurons. NeuroReport 6:21–25. https://doi.org/10.1097/00001756-199412300-00007

    Article  CAS  PubMed  Google Scholar 

  31. Levine ES, Dreyfus CF, Black IB, Plummer MR (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc Natl Acad Sci USA 92:8074–8077. https://doi.org/10.1073/pnas.92.17.8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyanishi H, Kitazawa A, Izuo N, Muramatsu SI, Nitta A (2022) N-acetyl transferase, Shati/Nat8l, in the dorsal hippocampus suppresses aging-induced impairment of cognitive function in mice. Neurochem Res. https://doi.org/10.1007/s11064-022-03594-0

    Article  PubMed  Google Scholar 

  33. López-Toledano MA, Shelanski ML (2007) Increased neurogenesis in young transgenic mice overexpressing human APP(Sw, Ind). J Alzheimers Dis 12:229–240. https://doi.org/10.3233/jad-2007-12304

    Article  PubMed  Google Scholar 

  34. Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, Sugimoto H (2007) Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice. NeuroReport 18:1801–1805. https://doi.org/10.1097/WNR.0b013e3282f1c9e9

    Article  PubMed  Google Scholar 

  35. Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442. https://doi.org/10.1254/jphs.cpj06007x

    Article  CAS  PubMed  Google Scholar 

  36. Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M et al (2018) The role of calcium-permeable AMPARs in long-term potentiation at principal neurons in the rodent hippocampus. Front Synap Neurosci 10:42. https://doi.org/10.3389/fnsyn.2018.00042

    Article  CAS  Google Scholar 

  37. Kimura R, Ohno M (2009) Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis 33:229–235. https://doi.org/10.1016/j.nbd.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  38. Pei YA, Davies J, Zhang M, Zhang HT (2020) The role of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 76:49–62. https://doi.org/10.3233/JAD-191334

    Article  CAS  PubMed  Google Scholar 

  39. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058. https://doi.org/10.1038/nn1503

    Article  CAS  PubMed  Google Scholar 

  40. Gu Z, Liu W, Yan Z (2009) b-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem 284:10639–10649. https://doi.org/10.1074/jbc.M806508200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1994) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709. https://doi.org/10.1038/381706a0

    Article  Google Scholar 

  42. Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY et al (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc Natl Acad Sci USA 94:8191–8195. https://doi.org/10.1073/pnas.94.15.8191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Narisawa-Saito M, Carnahan J, Araki K, Yamaguchi T, Nawa H (1999) Brain-derived neurotrophic factor regulates the expression of AMPA receptor proteins in neocortical neurons. Neuroscience 88:1009–1014. https://doi.org/10.1016/s0306-4522(98)00496-5

    Article  CAS  PubMed  Google Scholar 

  44. Becker I, Lodder J, Gieselmann V, Eckhardt M (2010) Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem 285:29156–29164. https://doi.org/10.1074/jbc.M110.111765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504. https://doi.org/10.1007/s00441-006-0266-5

    Article  CAS  PubMed  Google Scholar 

  46. Liberto VD, Bonomo A, Frinchi M, Belluardo N, Mudò G (2010) Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience 165:863–873. https://doi.org/10.1016/j.neuroscience.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  47. Ciccarelli R, Iorio PD, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M et al (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27:275–281

    Article  CAS  Google Scholar 

  48. Miyamoto Y, Ishikawa Y, Iegaki N, Sumi K, Fu K, Sato K et al (2014) Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice. Int J Neuropsychopharmacol 17(8):1283–1294. https://doi.org/10.1017/S146114571400011X

    Article  CAS  PubMed  Google Scholar 

  49. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525. https://doi.org/10.1038/nn1659

    Article  CAS  PubMed  Google Scholar 

  50. Dong E, Tueting P, Matrisciano F, Grayson DR, Guidotti A (2016) Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl Psychiatry 6:e711

    Article  CAS  Google Scholar 

  51. Noh H, Seo H (2014) Age-dependent effects of valproic acid in Alzheimer’s disease (AD) mice are associated with nerve growth factor (NGF) regulation. Neuroscience 266:255–265. https://doi.org/10.1016/j.neuroscience.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  52. Tao W, Zhou W, Wang Y, Sun T, Wang H, Zhang Z et al (2016) Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain. Neuroscience 339:54–63. https://doi.org/10.1016/j.neuroscience.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  53. Matesanz SE, Battista V, Flickinger J, Jones JN, Kichula EA (2021) Clinical experience with gene therapy in older patients with spinal muscular atrophy. Pediatr Neurol 118:1–5. https://doi.org/10.1016/j.pediatrneurol.2021.01.012

    Article  PubMed  Google Scholar 

  54. Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu SI (2013) Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. Biomed Res Int 2013:974819. https://doi.org/10.1155/2013/974819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muramatsu SI, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735. https://doi.org/10.1038/mt.2010.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Naomi Takino and Mika Ito (Jichi Medical University, Shimosuke, Japan) for technical assistance in producing the Shati/Nat8l AAV vectors.

Funding

This work was supported by the grant-in-aid for Scientific Research (KAKENHI) (B) [JSPS KAKENHI JP26293213] (to SM) [21H02632] (to AN), [JP22H04922] (to AN) from the Japan Society for the Promotion of Science, Kobayashi Foundation (to AN), and SRF Grant for Biomedical Research and Foundation, Japan (to AN and NI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Nitta.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

Animal experiments were performed in accordance with the guidelines of the National Institutes of Health, the Animal Experiment Handling Regulations of the University of Toyama, and the Animal Experiment Regulations of the Ministry of Education, Culture, Sports, Science and Technology. Animal experimental protocols were approved by the Animal Care and Use Committee of the University of Toyama (Approval number A2017INM-1, A2020INM-1) and conducted in accordance with the Institutional Animal Experiment Handling Rules of the University of Toyama. DNA Genetic Recombination Committee of the University of Toyama (G2016PHA-9, G2020PHA-5, G2018INM-1).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chino, K., Izuo, N., Noike, H. et al. Shati/Nat8l Overexpression Improves Cognitive Decline by Upregulating Neuronal Trophic Factor in Alzheimer’s Disease Model Mice. Neurochem Res 47, 2805–2814 (2022). https://doi.org/10.1007/s11064-022-03649-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03649-2

Keywords

Navigation