Skip to main content

Advertisement

Log in

Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia is a leading cause of death in the globe, with a large societal cost. Deprivation of blood flow, together with consequent glucose and oxygen shortage, activates a variety of pathways that result in permanent brain damage. As a result, ischemia raises energy demand, which is linked to significant alterations in brain energy metabolism. Even at the low glucose levels reported in plasma during ischemia, glucose transport activity may adjust to assure the supply of glucose to maintain normal cellular function. Glucose transporters in the brain are divided into two groups: sodium-independent glucose transporters (GLUTs) and sodium-dependent glucose cotransporters (SGLTs).This review assess the GLUT structure, expression, regulation, pathobiology of GLUT in cerebral ischemia and regulators of GLUT and it also provides the synopsis of the literature exploring the relationship between GLUT and the various downstream signalling pathways for e.g., AMP-activated protein kinase (AMPK), CREB (cAMP response element-binding protein), Hypoxia-inducible factor 1 (HIF)-1, Phosphatidylinositol 3-kinase (PI3-K), Mitogen-activated protein kinase (MAPK) and adenylate-uridylate-rich elements (AREs). Therefore, the aim of the present review was to elaborate the therapeutic implications of GLUT in the cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials:

Not applicable.

Abbreviations

GLUT:

Glucose Transporters.

BBB:

Blood Brain Barrier.

MCAO:

Middle carotid artery occlusion.

STZ:

Streptozotocin.

HRE:

Hypoxia response element.

PLA2:

Phospholipase A2.

AMPK:

AMP-activated protein kinase.

CREB:

cAMP response element-binding protein.

OGD:

Oxygen and glucose deprivation.

TPA:

Tissue plasminogen activator.

HIF:

Hypoxia-inducible factor.

PI3-K:

Phosphatidylinositol 3-kinase.

VEGF:

Vascular endothelial growth factor.

PKB:

Protein kinase B.

MAPK:

Mitogen-activated protein kinase.

ERK:

Extracellular regulated kinase.

UTR:

Untranslated region.

AGE:

Aged garlic extract.

CVD:

Cardiovascular disease.

AA:

Ascorbic Acid.

IGE:

Idiopathic generalised epilepsies.

AREs:

Adenylate-uridylate-rich elements.

References

  1. Cura AJ, Carruthers A (2012) The role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism and homeostasis. Comprehensive Physiology, 2(2):863

  2. Patching SG (2017) Glucose transporters at the blood-brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54(2):1046–1077. https://doi.org/10.1007/s12035-015-9672-6

    Article  CAS  PubMed  Google Scholar 

  3. Qutub AA, Hunt CA (2005) Glucose transport to the brain: a systems model. Brain Res Rev 49(3):595–617

    Article  CAS  Google Scholar 

  4. Flynn RWV, MacWalter RSM, Doney ASF (2008) The cost of cerebral ischaemia. Neuropharmacology 55(3):250–256

    Article  CAS  Google Scholar 

  5. Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290(5491):481–486

    Article  CAS  Google Scholar 

  6. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407(6804):599–605. https://doi.org/10.1038/35036519

    Article  CAS  PubMed  Google Scholar 

  7. Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol 18(4):247–256

    Article  CAS  Google Scholar 

  8. Zhao FQ, Keating AF (2007) Functional properties and genomics of glucose transporters. Curr Genom 8(2):113–128

    Article  CAS  Google Scholar 

  9. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier Jr MH (2012) The major facilitator superfamily (MFS) revisited. The FEBS journal, 279(11):2022–2035. https://doi.org/10.1111/j.1742-4658.2012.08588.x

  10. Iancu CV, Zamoon J, Woo SB, Aleshin A, Choe JY (2013) Crystal structure of a glucose/H + symporter and its mechanism of action. Proceedings of the National Academy of Sciences, 110(44):17862–17867

  11. Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Aspects Med 34(2–3):183–196. https://doi.org/10.1016/j.mam.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  12. Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E, Bernaudin M, Boulouard M, Schumann-Bard P (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. European Journal of Neuroscience, 23(7):1757–1765. https://doi.org/10.1111/j.1460-9568.2006.04699.x

  13. Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metabolism 20(7):1011–1032. https://doi.org/10.1097/00004647-200007000-00001

    Article  CAS  Google Scholar 

  14. Kelly S (2000) Neuroprotection and Functional Alterations in Mice Over-Expressing Heat Shock Protein 70i. University of Glasgow (United Kingdom)

  15. Zhang WW, Zhang L, Hou WK, Xu YX, Hua XU, Lou FC, Zhang Y, Qian WANG (2009) Dynamic expression of glucose transporters 1 and 3 in the brain of diabetic rats with cerebral ischemia reperfusion. Chin Med J 122(17):1996–2001

    CAS  PubMed  Google Scholar 

  16. Iwabuchi S, Kawahara K (2011) Inducible astrocytic glucose transporter-3 contributes to the enhanced storage of intracellular glycogen during reperfusion after ischemia. Neurochem Int 59(2):319–325. https://doi.org/10.1016/j.neuint.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  17. Weisová P, Concannon CG, Devocelle M, Prehn JH, Ward MW (2009) Regulation of glucose transporter 3 surface expression by the AMP-activated protein kinase mediates tolerance to glutamate excitation in neurons. J Neurosci 29(9):2997–3008. https://doi.org/10.1523/JNEUROSCI.0354-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rajakumar A, Thamotharan S, Raychaudhuri N, Menon RK, Devaskar SU (2004) Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons. J Biol Chem 279(25):26768–26779

    Article  CAS  Google Scholar 

  19. Espinoza-Rojo M, Iturralde-Rodriguez I, Chanez-Cardenas KElena, Ruiz-Tachiquin MEugenia, Aguilera P (2010) Glucose transporters regulation on ischemic brain: possible role as therapeutic target. Cent Nerv Syst Agents Med Chem (Formerly Curr Med Chemistry-Central Nerv Syst Agents) 10(4):317–325

    CAS  Google Scholar 

  20. Espinoza-Rojo M, Iturralde-Rodriguez I, Chanez-Cardenas KElena, Ruiz-Tachiquin MEugenia, Aguilera P (2010) Glucose transporters regulation on ischemic brain: possible role as therapeutic target. Cent Nerv Syst Agents Med Chem (Formerly Curr Med Chemistry-Central Nerv Syst Agents) 10(4):317–325. https://doi.org/10.2174/187152410793429755

    Article  CAS  Google Scholar 

  21. Zovein A, Flowers-Ziegler J, Thamotharan S, Shin D, Sankar R, Nguyen K, Gambhir S, Devaskar SU (2004) Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 286(2):R273-R282. https://doi.org/10.1152/ajpregu.00160.2003

  22. Véga C, Sachleben R Jr, Gozal L, Gozal E (2006) Differential metabolic adaptation to acute and long-term hypoxia in rat primary cortical astrocytes. J Neurochem 97(3):872–883

    Article  Google Scholar 

  23. Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Rev 44(1):13–47. https://doi.org/10.1016/j.brainresrev.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Jing M, Cheruvu VK, Ismail-Beigi F (2008) Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. Am J Physiology-Cell Physiol 295(5):C1071–C1082

    Article  CAS  Google Scholar 

  25. Marino S, Marani L, Nazzaro C, Beani L, Siniscalchi A (2007) Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology 28(3):622–629. https://doi.org/10.1016/j.neuro.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  26. Selvatici R, Previati M, Marino S, Marani L, Falzarano S, Lanzoni I, Siniscalchi A (2009) Sodium azide induced neuronal damage in vitro: evidence for non-apoptotic cell death. Neurochem Res 34(5):909–916. https://doi.org/10.1007/s11064-008-9852-0

    Article  CAS  PubMed  Google Scholar 

  27. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045

    Article  CAS  Google Scholar 

  28. Pichiule P, Agani F, Chavez JC, Xu K, LaManna JC (2003) HIF-1α and VEGF expression after transient global cerebral ischemia. Oxygen Transport to Tissue XXIV. Springer, Boston, MA, pp 611–617

    Chapter  Google Scholar 

  29. Yeh WL, Lin CJ, Fu WM (2008) Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 73(1):170–177. https://doi.org/10.1124/mol.107.038851

    Article  CAS  PubMed  Google Scholar 

  30. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of glut1 mRNA by hypoxia-inducible factor-1: interaction between H-ras and hypoxia. J Biol Chem 276(12):9519–9525. https://doi.org/10.1074/jbc.M010144200

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Zhao J, Hu Y, Lu H, Guo J (2010) Oxygen free radicals regulate energy metabolism via AMPK pathway following cerebral ischemia. Neurol Res 32(7):779–784. https://doi.org/10.1179/174313209X459174

    Article  CAS  PubMed  Google Scholar 

  32. Amato S, Man HY (2011) AMPK links cellular bioenergy status to the decision making of axon initiation in neurons. Cell logistics 1(3):103–105. https://doi.org/10.4161/cl.1.3.16815

    Article  Google Scholar 

  33. Iwabuchi S, Kawahara K, Harata NC (2014) Effects of pharmacological inhibition of AMP-activated protein kinase on GLUT3 expression and the development of ischemic tolerance in astrocytes. Neurosci Res 84:68–71. https://doi.org/10.1016/j.neures.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  34. Mohamed SK, Ahmed AA, El Morsy EM, Nofal S (2019) The protective effect of zeranol in cerebral ischemia reperfusion via p-CREB overexpression. Life Sci 217:212–221. https://doi.org/10.1016/j.lfs.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  35. Rajakumar A, Thamotharan S, Raychaudhuri N, Menon RK, Devaskar SU (2004) Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons. J Biol Chem 279(25):26768–26779. https://doi.org/10.1074/jbc.M402735200

    Article  CAS  PubMed  Google Scholar 

  36. Yu S, Cheng Q, Li L, Liu M, Yang Y, Ding F (2014) 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-d-pyranoside confers neuroprotection in cell and animal models of ischemic stroke through calpain1/PKA/CREB-mediated induction of neuronal glucose transporter 3. Toxicol Appl Pharmcol 277(3):259–269. https://doi.org/10.1016/j.taap.2014.03.025

    Article  CAS  Google Scholar 

  37. Yu S, Liu X, Shen Y, Xu H, Yang Y, Ding F (2016) Therapeutic benefits of combined treatment with tissue plasminogen activator and 2-(4-methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-d-pyranoside in an animal model of ischemic stroke. Neuroscience, 327:44–52. https://doi.org/10.1016/j.neuroscience.2016.04.006

  38. Kunze R, Zhou W, Veltkamp R, Wielockx B, Breier G, Marti HH (2012) Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke 43(10):2748–2756. https://doi.org/10.1161/STROKEAHA.112.669598

    Article  CAS  PubMed  Google Scholar 

  39. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. https://doi.org/10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF‐1α expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. Journal of neurochemistry, 105(5):1849–1860. https://doi.org/10.1111/j.1471-4159.2008.05287.x

  41. Zhang B, Tanaka J, Yang L, Sakanaka M, Hata R, Maeda N, Mitsuda N (2004) Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience 126(2):433–440. https://doi.org/10.1016/j.neuroscience.2004.03.057

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Zuo W, Guo XF, He WB, Chen NH (2014) Cerebral glucose transporter: the possible therapeutic target for ischemic stroke. Neurochem Int 70:22–29. https://doi.org/10.1016/j.neuint.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  43. Guo S, Cosky E, Li F, Guan L, Ji Y, Wei W, Peng C, Geng X, Ding Y (2021) An inhibitory and beneficial effect of chlorpromazine and promethazine (C + P) on hyperglycolysis through HIF-1α regulation in ischemic stroke. Brain Res 1763:147463. https://doi.org/10.1016/j.brainres.2021.147463

    Article  CAS  PubMed  Google Scholar 

  44. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70(1):535–602. https://doi.org/10.1146/annurev.biochem.70.1.535

    Article  CAS  PubMed  Google Scholar 

  45. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. DOI: https://doi.org/10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  46. Hashimoto R, Yu J, Koizumi H, Ouchi Y, Okabe T (2012) Ginsenoside Rb1 prevents MPP+-induced apoptosis in PC12 cells by stimulating estrogen receptors with consequent activation of ERK1/2, Akt and inhibition of SAPK/JNK, p38 MAPK. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/693717

  47. Xiao Z, Bjørås M, Gang Z (2013) Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK 1/2 pathways. Front Pharmacol 4:152

    Google Scholar 

  48. Russell III, Bergeron RR, Shulman R, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol Heart Circ Physiol 277(2). https://doi.org/10.1152/ajpheart.1999.277.2.H643. .H643-H649

  49. Mielke K, Herdegen T (2000) JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 61(1):45–60. https://doi.org/10.1016/S0301-0082(99)00042-8

    Article  CAS  PubMed  Google Scholar 

  50. Lee YK, Kim JE, Nam SH, Goo JS, Choi SI, Choi YH, Bae CJ, Woo JM, Cho JS, Hwang DY (2011) Differential regulation of the biosynthesis of glucose transporters by the PI3-K and MAPK pathways of insulin signaling by treatment with novel compounds from Liriope platyphylla. Int J Mol Med 27(3):319–327. https://doi.org/10.3892/ijmm.2010.581

    Article  CAS  PubMed  Google Scholar 

  51. Lin Z, Weinberg JM, Malhotra R, Merritt SE, Holzman LB, Brosius III, F.C (2000) GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation. Am J Physiology-Endocrinology Metabolism 278(5):E958–E966. https://doi.org/10.1152/ajpendo.2000.278.5.E958

    Article  CAS  Google Scholar 

  52. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43(1):4–15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takata J, Karube Y, Fujiwara M (2003) Vitamin E isoforms α-tocotrienol and γ-tocopherol prevent cerebral infarction in mice. Neurosci Lett 337(1):56–60. https://doi.org/10.1016/S0304-3940(02)01293-4

    Article  CAS  PubMed  Google Scholar 

  54. Chow CK, Hong CB (2002) Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology 180(2):195–207. https://doi.org/10.1016/S0300-483X(02)00391-8

    Article  CAS  PubMed  Google Scholar 

  55. Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131(3):1010S–1015S

    Article  CAS  Google Scholar 

  56. Calderon-Aguilera LE, Aragón-Noriega EA, Hand CM, Moreno-Rivera VM (2010) Morphometric relationships, age, growth, and mortality of the geoduck clam, Panopea generosa, along the Pacific coast of Baja California, Mexico. J Shellfish Res 29(2):319–326

    Article  Google Scholar 

  57. Daniel Gomez C, Aguilera P, Ortiz Plata A, Nares López F, Cardenas C, Flores Alfaro ME, Tachiquin ERuiz, Rojo E, M (2019) Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia

  58. Manwani B, McCullough LD (2012) Estrogen in ischemic stroke: the Debate Continues. European journal of neurology: the official journal of the European Federation of Neurological Societies, 19(10):1276

  59. Loucks TL, Berga SL (2009) May. Does postmenopausal estrogen use confer neuroprotection? Seminars in reproductive medicine, 27(03):260–274. © Thieme Medical Publishers

  60. Merz CNB, Johnson BD, Berga SL, Braunstein GD, Azziz R, Yang Y, Reis SE, Bittner V, Hodgson TK, Pepine CJ, Sharaf BL (2009) Total estrogen time and obstructive coronary disease in women: insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Women’s Health 18(9):1315–1322. https://doi.org/10.1089/jwh.2008.1063

    Article  Google Scholar 

  61. Shi H, Shigeta H, Yang N, Fu K, O’brian G, Teng CT (1997) Human estrogen receptor-like 1 (ESRL1) gene: genomic organization, chromosomal localization, and promoter characterization. Genomics 44(1):52–60. https://doi.org/10.1006/geno.1997.4850

    Article  CAS  PubMed  Google Scholar 

  62. Krishnamoorthy S, Paranthaman R, Moses JA, Anandharamakrishnan C (2022) Curcumin. Nutraceuticals and Health Care. Academic Press, pp. 159–175

  63. Xia M, Ye Z, Shi Y, Zhou L, Hua Y (2018) Curcumin improves diabetes mellitusassociated cerebral infarction by increasing the expression of GLUT1 and GLUT3. Mol Med Rep 17(1):1963–1969

    CAS  PubMed  Google Scholar 

  64. Castro CN, Tabarrozzi B, Winnewisser AE, Gimeno J, Antunica Noguerol ML, Liberman M, Paz AC, Dewey DA, Perone MJ (2014) Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Experimental Immunol 177(1):149–160

    Article  CAS  Google Scholar 

  65. Iwata N, Okazaki M, Xuan M, Kamiuchi S, Matsuzaki H, Hibino Y (2014) Orally administrated ascorbic acid suppresses neuronal damage and modifies expression of SVCT2 and GLUT1 in the brain of diabetic rats with cerebral ischemia-reperfusion. Nutrients 6(4):1554–1577

    Article  CAS  Google Scholar 

  66. Cisternas P, Silva-Alvarez C, Martínez F, Fernandez E, Ferrada L, Oyarce K, Salazar K, Bolaños JP, Nualart F (2014) The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. J Neurochem 129(4):663–671

    Article  CAS  Google Scholar 

  67. Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Develop 31(7):545–552. https://doi.org/10.1016/j.braindev.2009.02.008

    Article  Google Scholar 

  68. Gras D, Roze E, Caillet S, Méneret A, Doummar D, De Villemeur TB, Vidailhet M, Mochel F (2014) GLUT1 deficiency syndrome: an update. Rev Neurol 170(2):91–99. https://doi.org/10.1016/j.neurol.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  69. Arsov T, Mullen SA, Rogers S, Phillips AM, Lawrence KM, Damiano JA, Goldberg-Stern H, Afawi Z, Kivity S, Trager C, Petrou S (2012) Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Annals of neurology, 72(5):807–815. https://doi.org/10.1002/ana.23702

  70. Vieker S, Schmitt J, Längler A, Schmidt W, Klepper J (2012) Unusual sensitivity to steroid treatment in intractable childhood epilepsy suggests GLUT1 deficiency syndrome. Neuropediatrics 43(05):275–278

    Article  Google Scholar 

  71. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA (2013) Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol 70(11):1440–1444

    Article  Google Scholar 

  72. Marin-Valencia I, Good LB, Ma Q, Duarte J, Bottiglieri T, Sinton CM, Heilig CW, Pascual JM (2012) Glut1 deficiency (G1D): epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol Dis 48(1):92–101. https://doi.org/10.1016/j.nbd.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Compliance with Ethical Standards

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

There are no conflicts of interest.

Credit Author Statement

Conceptualization: Thakur Gurjeet Singh. Analyzed the data: Veerta Sharma, Thakur Gurjeet Singh Wrote the manuscript: Veerta Sharma. Visualization: Ashi Mannan Editing of the Manuscript: Thakur Gurjeet Singh Critically reviewed the article: Thakur Gurjeet Singh. Supervision: Thakur Gurjeet Singh.

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Singh, T.G. & mannan, A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem Res 47, 2173–2186 (2022). https://doi.org/10.1007/s11064-022-03620-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03620-1

Keywords

Navigation