Skip to main content

Advertisement

Log in

Neurobehavioral Toxicity Induced by Carbendazim in Rats and the Role of iNOS, Cox-2, and NF-κB Signalling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Carbendazim (CBZ) is one of the most common fungicides used to fight plant fungal diseases, otherwise, it leaves residue on fruits, vegetables, and soil that contaminate the environment, water, animal, and human causing serious health problems. Several studies have reported the reproductive and endocrine pathological disorders induced by CBZ in several animal models, but little is known about its neurotoxicity. So that, the present study aimed to explain the possible mechanisms of CBZ induced neurotoxicity in rats. Sixty male Wistar rats were divided into 4 groups (n = 15). Group (1) received normal saline and was kept as the negative control group, whereas groups (2, 3, 4) received CBZ at 100, 300, 600 mg/kg b.wt respectively. All rats received the aforementioned materials daily via oral gavage. Brain tissue samples were collected at 7, 14, 28 days from the beginning of the experiment. CBZ induced oxidative stress damage manifested by increasing MDA levels and reducing the levels of TAC, GSH, CAT in some brain areas at 14 and 28 days. There were extensive neuropathological alterations in the cerebrum, hippocampus, and cerebellum with strong caspase-3, iNOS, Cox-2 protein expressions mainly in rats receiving 600 mg/kg CBZ at each time point. Moreover, upregulation of mRNA levels of NF-κB, TNF-α, IL-1B genes and downregulation of the transcript levels of both AchE and MAO genes were recorded in all CBZ receiving groups at 14 and 28 days especially those receiving 600 mg/kg CBZ. Our results concluded that CBZ induced dose- and time-dependent neurotoxicity via disturbance of oxidant/antioxidant balance and activation of NF-κB signaling pathway. We recommend reducing the uses of CBZ in agricultural and veterinary fields or finding other novel formulations to reduce its toxicity on non-target organisms and enhance its efficacy on the target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available on request.

Abbreviations

AchE:

Acetylcholinesterase

ACTB:

Beta-actin housekeeping gene

ATP:

Adenosine triphosphate

b.wt:

Body weight

CA:

Cornu Ammonis

CAT:

Catalase

CBZ:

Carbendazim

Cox-2:

Cyclooxygenase-2

DNA:

Deoxyribonucleic acid

EDTA:

Ethylene diamine tetra acstic acid

GSH:

Glutathione

GTP:

Guanosine triphosphate

H&E:

Hematoxylin & Eosin

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LAF:

Lymphocyte-activating factor

LD50:

Lethal dose-50

MAO:

Monoamine oxidase

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MMP:

Matrix metalloproteinase

mRNA:

Messenger ribonucleic acid

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

PBS:

Phosphate buffer saline

PGE2:

Prostaglandine E2

ROS:

Reactive oxygen species

Rt-PCR:

Real-time polymerase chain reaction

SEM:

Standard error of mean

TAC:

Total antioxidant capacity

TNF-α:

Tumor necrosis factor-alpha

References

  1. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537. https://doi.org/10.1007/s00203-017-1426-6

    Article  CAS  Google Scholar 

  2. Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS ONE 9:e111786. https://doi.org/10.1371/journal.pone.0111786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel GM, Rohit J, Singhal RK, Kailasa SK (2015) Recognition of carbendazim fungicide in environmental samples by using4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sens Actuators B Chem 206:684–691. https://doi.org/10.1016/j.snb.2014.09.095

    Article  CAS  Google Scholar 

  4. De A, Bose R, Kumar A, Mozumdar S (2014) Worldwide pesticide use. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi

    Chapter  Google Scholar 

  5. Devi PA, Paramasivam M, Prakasam V (2015) Degradation pattern and risk assessment of carbendazim and mancozeb in mango fruits. Environ Monit Assess 187:1–6. https://doi.org/10.1007/s10661-014-4142-6

    Article  CAS  Google Scholar 

  6. Selmanoglu G, Barlas N, Songur S, KocSkaya EA (2001) Carbendazim induced heamatological, biochemical and histopathological changes to the liver and kidney of male rats. Hum Exp Toxicol 20:625–630. https://doi.org/10.1191/096032701718890603

    Article  CAS  PubMed  Google Scholar 

  7. Bhushan C, Bhardwaj A, Misra SS (2013) State of pesticide regulations in India. Centre for Science and Environment, New Delhi

    Google Scholar 

  8. Banyiova K, Necasova A, Kohoutek J, Justan I, Čupr P (2016) New experimental data on the human dermal absorption of simazine and carbendazim help to refine the assessment of human exposure. Chemosphere 145:148–156. https://doi.org/10.1016/j.chemosphere.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  9. Goodson WH, Lowe L, Carpenter DO et al (2015) Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcin 36:254–296. https://doi.org/10.1093/carcin/bgv039

    Article  CAS  Google Scholar 

  10. Ferreira AL, Loureiro S, Soares AM (2008) Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aqua Toxicol 89:28–39. https://doi.org/10.1016/j.aquatox.2008.05.012

    Article  CAS  Google Scholar 

  11. Zhang X, Huang Y, Harvey PR, Li H, Ren Y (2013) Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11. PLoS ONE 8:1–6. https://doi.org/10.1371/journal.pone.0074810

    Article  CAS  Google Scholar 

  12. Huan Z, Luo J, Xu Z, Xie D (2016) Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bull Environ Contam Toxicol 96:62–69. https://doi.org/10.1007/s00128-015-1653-y

    Article  CAS  PubMed  Google Scholar 

  13. Singh S, Singh N, Kumar V, Datta S, Wani A, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329. https://doi.org/10.1007/s10311-016-0566-2

    Article  CAS  Google Scholar 

  14. Morinaga H, Yanase T, Nomura M, Okabe T, Goto K, Harada N, Nawata H (2004) A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinol 145:1860–1869. https://doi.org/10.1210/en.2003-1182

    Article  CAS  Google Scholar 

  15. Yu Y, Chu X, Pang G, Xiang Y, Fang H (2009) Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. J Environ Sci 21(2):179–185. https://doi.org/10.1016/S1001-0742(08)62248-2

    Article  CAS  Google Scholar 

  16. Winder BS, Strandgaard CS, Miller MG (2001) The role of GTP binding and microtubule-associated proteins in the inhibition of microtubule assembly by carbendazim. Toxicol Sci 59:138–146. https://doi.org/10.1093/toxsci/59.1.138

    Article  CAS  PubMed  Google Scholar 

  17. Rama EM, Bortolan S, Vieira ML, Gerardin DC, Moreira EG (2014) Reproductive and possible hormonal effects of carbendazim. Regul Toxicol Pharmacol 69:476–486. https://doi.org/10.1016/j.yrtph.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  18. Salihu M, Ajayi BO, Adedara IA, Farombi EO (2015) 6-Gingerol-rich fraction from Zingiber Officinale prevents hematotoxicity and oxidative damage in kidney and liver of rats exposed to carbendazim. J Diet Suppl 16:1–16. https://doi.org/10.3109/19390211.2015.1107802

    Article  CAS  Google Scholar 

  19. Zubrod JP, Baudy P, Schulz R, Bundschuh M (2014) Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquat Toxicol 150:133–143. https://doi.org/10.1016/j.aquatox.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  20. Hsu YH, Chang CW, Chen MC, Yuan CY (2011) Carbendazim induced androgen receptor expression antagonized by flutamide in male rats. J Food Drug Anal 19:4

    Google Scholar 

  21. Yenjerla M, Cox C, Wilson L, Jordan MA (2009) Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J Pharmacol Exp Ther 328:390–398. https://doi.org/10.1124/jpet.108.143537

    Article  CAS  PubMed  Google Scholar 

  22. Abdel-Mobdy YE, Saleh MA, Nassar DM, Kandil MA (2018) Subchronic effect of carbendazim on spermatogenesis and fertility in male albino rats before and after accelerated storage. Res J Pharm Biol Chem Sci 9(5):303

    CAS  Google Scholar 

  23. Nowzo SO, Ozegbe PC, Olasehinde O (2017) Carbendazim alters kidney morphology, kidney function tests, tissue markers of oxidative stress and serum micro-elements in rats fed protein-energy malnourished diet. Int J Biol Chem Sci 11(3):1046–1055

    Article  CAS  Google Scholar 

  24. Owumi SE, Nowozo SO, Najophe ES (2019) Quercetin abates induction of hepatic and renal oxidative damage, inflammation, and apoptosis in carbendazim-treated rats. Toxicol Res Appl 3:1–8. https://doi.org/10.1177/2397847319849521

    Article  CAS  Google Scholar 

  25. Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z (2015) Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol Sci 147(1):116–126

    Article  CAS  PubMed  Google Scholar 

  26. Frye CA, Walf AA (2002) Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrus rats. Horm Behav 41(3):306–315. https://doi.org/10.1006/hbeh.2002.1763

    Article  CAS  PubMed  Google Scholar 

  27. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rasoulijazi H, Joghataei M, Noubakht M, Roughani M (2007) The beneficial effect of (-)-epigallocatechin-3-gallate in an experimental model of Alzheimer disease in rat: a behavioral analysis. Iran Biomed J 11(4):237–243

    Google Scholar 

  29. Bancroft JD, Layton C (2013) The hematoxylins and eosin. In: Suvarna Kim (ed) Bancroft’s theory and practice of histological techniques. Churchill Living tone, London, pp 173–186

    Chapter  Google Scholar 

  30. Gad SC, Rousseaux CG (2002) Use and misuse of statistics as an aid in study interpretation. In: Haschek WM, Rousseaux CG, Wallig MA (eds) Handbook of toxicologic pathology. Academic Press, San Diego, pp 327–418

    Chapter  Google Scholar 

  31. Chaâbane M, Ghorbel I, Elwej A, Mnif H, Boudawara T, Chaâbouni SE, Zeghal N, Soudani N (2017) Penconazole alters redox status, cholinergic function, and membrane bound ATPases in the cerebrum and cerebellum of adult rats. Hum Exp Toxicol 36(8):1–13

    Article  CAS  Google Scholar 

  32. Hassanen EI, Ibrahim MA, Hassan AM, Mehanna S, Aljuaydi SH, Issa MY (2021) Neuropathological and cognitive effects induced by CuO–NPs in rats and trials for prevention using pomegranate juice. Neurochem Res 46:1264–1279. https://doi.org/10.1007/s11064-021-03264-7

    Article  CAS  PubMed  Google Scholar 

  33. Derelanko MJ (2000) Acute/chronic toxicology. In: Toxicologist’s pocket handbook. CRC Press, Boca Raton

    Chapter  Google Scholar 

  34. Hassanen EI, Korany RMS, Bakeer AM (2021) Cisplatin conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J Biochem Mol Toxicol 35(5):e22722. https://doi.org/10.1002/jbt.22722

    Article  CAS  PubMed  Google Scholar 

  35. Jiang JH, Wu SG, Wu CX, An XH, Cai LM (2014) Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Daniorerio). Fish Shellfish Immunol 41:493–500

    Article  CAS  PubMed  Google Scholar 

  36. Apaydin M, Erbas O, Taskiran D (2016) Protection by edaravone, a radical scavenger, against manganese-induced neurotoxicity in rats. J Biochem Mol Toxicol 30:5

    Article  CAS  Google Scholar 

  37. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The mouse forced swim test. J Vis Exp 59:e3638. https://doi.org/10.3791/3638

    Article  CAS  Google Scholar 

  38. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behaviour in rodents. Nat Protoc 2(2):322–328. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  40. Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8:1703–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim D, Baik SH, Kang S, Cho SW, Bae J, Cha MY, Sailor MJ, Mook-Jung I, Ahn KH (2016) Close correlation of monoamine oxidase activity with progress of Alzheimer’s disease in mice. Observed by in vivo two-photon imaging. ACS Cent Sci 2(12):967–975. https://doi.org/10.1021/acscentsci.6b00309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adedara IA, Vaithinathan S, Jubendradass R, Mathur PP, Farombi EO (2013) Kolavir on prevents carbendazim-induced steroidogenic dysfunction and apoptosis in testes of rats. Environ Toxicol Pharmacol 35:444–453. https://doi.org/10.1016/j.etap.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  43. Lutz P (2012) Benzimidazole and its derivatives—from fungicides to designer drug. A new occupational and environmental hazard. Med Pr 63(4):505–513

    PubMed  Google Scholar 

  44. Dikić D, Landeka I, Knežević F, Mojsović- Ćuić A, Benković V, Horvat-Knežević A, Lončar G, Teparić R, Rogić D (2012) Carbendazim impends hepatic necrosis when combined with imazalil or cypermethrin. Basic Clin Pharmacol Toxicol 110(5):433–440. https://doi.org/10.1111/j.1742-7843.2011.00831.x

    Article  CAS  PubMed  Google Scholar 

  45. McDaniel KL, Padilla S, Marshall RS, Phillips PM, Podhorniak L, Qian Y, Moser VC (2007) Comparison of acute neurobehavioral and cholinesterase inhibitory effects of N-methylcarbamates in rat. Toxicol Sci 98(2):552–560

    Article  CAS  PubMed  Google Scholar 

  46. Yeung PK, Lai AK, Son HJ, Zhang X, Hwang O, Chung SS, Chung SK (2017) Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson’s disease. Neurobiol Aging 50:119–133

    Article  CAS  PubMed  Google Scholar 

  47. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases. Int J Physiol Pathophysiol Pharmacol 87:245–313

    CAS  Google Scholar 

  49. Ahmad R, Rasheed Z, Ahsan H (2009) Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. Immunopharmacol Immunotoxicol 31:388–396

    Article  CAS  PubMed  Google Scholar 

  50. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  51. Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Biochem Cell Biol 34:1372–1381

    Article  CAS  Google Scholar 

  52. Zhao Y, Newman MC (2006) Effects of exposure duration and recovery time during pulsed exposures. Environ Toxicol Chem 25:1298–1304

    Article  CAS  PubMed  Google Scholar 

  53. Damalas CA, Koutroubas SD (2016) Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics 4:1. https://doi.org/10.3390/toxics4010001

    Article  PubMed Central  Google Scholar 

  54. Fenske RA, Day EW (2005) Assessment of exposure for pesticide handlers in agricultural, residential and institutional environments. In: Occupational and residential exposure assessment for pesticides. Wiley, Chichester, pp 13–43. https://doi.org/10.1002/0470012218.CH1

    Chapter  Google Scholar 

  55. Zidar N, Odar K, Glavac D, Jerse M, Zupanc T, Stajer D (2009) Cyclooxygenase in normal human tissues—is COX-1 really a constitutive isoform, and COX-2 an inducible isoform? J Cell Mol Med 13:3753–3763

    Article  PubMed  Google Scholar 

  56. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V, Przedborski S (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci USA 100(9):5473–5478. https://doi.org/10.1073/pnas.0837397100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang M, Gorasiya S, Antoine DJ, Sitapara RA, Wu W, Sharma L et al (2015) The compromise of macrophage functions by hyperoxia is attenuated by ethacrynic acid via inhibition of NF-kappaB-mediated release of high-mobility group box-1. Am J Respir Cell Mol 52(2):171–182. https://doi.org/10.1165/rcmb.2013-0544OC

    Article  Google Scholar 

  58. Im JY, Kim D, Paik SG, Han PL (2006) Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Rad Biol Med 41:960–972. https://doi.org/10.1016/j.freeradbiomed.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  59. Banks CN, Lein JA (2012) Review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. Neurotoxicol 33:575–584

    Article  CAS  Google Scholar 

  60. Chambers J, Oppenheimer SF (2004) Organophosphates, serine esterase inhibition, and modeling of organophosphate toxicity. Toxicol Sci 77:185–187

    Article  CAS  PubMed  Google Scholar 

  61. Cao DL, Zhang ZJ, Xie RG, Jiang BC, Ji RR, Gao YJ (2014) Chemokine CXCL1enhances inflammatory pain and increases NMDA receptor activity andCOX-2 expression in spinal cord neurons via activation of CXCR2. Exp Neurol 261:328–336

    Article  CAS  PubMed  Google Scholar 

  62. Ogata S, Kubota Y, Yamashiro T, Takeuchi H, Ninomiya T, Suyama Y, Shirasuna K (2007) Signaling pathways regulating IL-1alpha-induced COX-2 expression. J Dent Res 86:186–191

    Article  CAS  PubMed  Google Scholar 

  63. Zeng M, Tong QY (2020) Anti-inflammation effects of sinomenine on macrophages through suppressing activated tlr4/nf-kappa b signaling pathway. Curr Med Sci 40(1):130–137

    Article  CAS  PubMed  Google Scholar 

  64. Sun G, Guzman E, Balasanyan V, Conner CM, Wong K, Zhou HR, Kosik KS, Montell DJ (2017) A molecular signature for anastasis, recovery from the brink of apoptotic cell death. J Cell Biol 16(10):3355–3368. https://doi.org/10.1083/jcb.201706134

    Article  CAS  Google Scholar 

  65. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  66. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39:1003–1018. https://doi.org/10.1016/j.immuni.2013.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  CAS  PubMed  Google Scholar 

  68. Fichera LE, Albareda MC, Laucella SA, Postan M (2004) Intracellular growth of Trypanosoma cruzi in cardiac myocytes is inhibited by cytokine-induced nitric oxide release. Infect Immun 72:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Teixeira CC, Ischiropoulos H, Leboy PS, Adams SL, Shapiro IM (2005) Nitric oxide-nitric oxide synthase regulates key maturational events during chondrocyte terminal differentiation. Bone 37:37–45

    Article  CAS  PubMed  Google Scholar 

  70. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  71. Lossi L, Castagna C, Merighi A (2015) Neuronal cell death: an overview of its different forms in central and peripheral neurons. In: Neuronal cell death. Springer, New York, pp 1–18

    Google Scholar 

  72. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Khalaf AA, Hassanen EI, Ibrahim MA, Tohamy AF, Aboseada MA, Hassan HM, Zaki AR (2020) Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J Biochem Mol Toxicol 34(11):e22579

    Article  CAS  PubMed  Google Scholar 

  74. Choudhary GS, Al-Harbi S, Almasan A (2015) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 1219:1–9

    Article  CAS  PubMed  Google Scholar 

  75. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomed 14:4723–4739. https://doi.org/10.2147/IJN.S207644

    Article  CAS  Google Scholar 

  76. Hassanen EI, Tohamy AF, Hassan AM, Ibrahim MA, Issa MY, Farroh KY (2019) Pomegranate juice diminishes the mitochondrial-dependent cell death and NF-ĸB signaling pathway induced by Copper oxide nanoparticles on the liver and kidneys of rats. Int J Nanomed 14:8905–8922

    Article  CAS  Google Scholar 

  77. Gheena S, Ezhilarasan D (2019) Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum Exp Toxicol 38:694–702

    Article  CAS  PubMed  Google Scholar 

  78. Almagro MC, Vucic D (2015) Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol 39(56):62

    Google Scholar 

Download references

Funding

This research didn’t receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman I. Hassanen.

Ethics declarations

Conflict of interest

No competing interest declared.

Ethical Approval

All Institutional and National Guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebedy, Y.A., Hassanen, E.I., Hussien, A.M. et al. Neurobehavioral Toxicity Induced by Carbendazim in Rats and the Role of iNOS, Cox-2, and NF-κB Signalling Pathway. Neurochem Res 47, 1956–1971 (2022). https://doi.org/10.1007/s11064-022-03581-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03581-5

Keywords

Navigation