Skip to main content

Advertisement

Log in

Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

3-MA:

3-Methyladenine

Aβ:

Amyloid-β (Aβ)

AIS:

Acute ischemic stroke

Akt/PKB:

Protein kinase B

AMP:

Adenosine monophosphate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AMPK:

Adenosine monophosphate–activated protein kinase

ATG:

Autophagy-related genes

ATF6:

Activating transcription factor 6

ATP:

Adenosine triphosphate

BAX:

Bcl 2-associated X protein

BI:

Barthel Scale/Index

BBB:

Blood–brain barrier

BCAO:

Bilateral common carotid artery occlusion

Bcl-2:

B-cell lymphoma 2

BNIP3:

Bcl2 interacting protein 3

BNIP3L:

Bcl2 interacting protein 3 like

BMECs:

Brain microvascular endothelial cells

Ca2+:

Calcium ion

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

CHOP:

C/EBP-homologous protein

DRAM:

Damage-regulated autophagy modulator

DRP1:

Dynamin-related protein 1

ER:

Endoplasmic reticulum

ERK:

Extracellular regulated protein kinases

eIF2α :

Eukaryotic initiation factor 2α

Elk1:

ETS transcription factor ELK1

FDA:

Food and Drug Administration

FOXO3:

Forkhead box O3

G-CSF:

Granulocyte-colony stimulating factor

GDP:

Guanosine diphosphate

GRP78:

Glucose regulatory protein 78

GTP:

Guanosine triphosphate

HHcy:

Hyperhomocysteinemia

HIF-1:

Hypoxia-Inducible Factor-1

HUK:

Human urinary kallidinogenase

HUVECs:

Human umbilical vein endothelial cells

IKK:

IκB kinase

IRE1:

Inositol requiring kinase 1

I/R injury:

Ischemia/reperfusion injury

JNK:

C-Jun N-terminal kinase

K+:

Potassium ion

LC3:

Microtubule-associated protein 1A/1B-light chain 3

MAPK:

Mitogen-activated protein kinase

MCAO:

Middle cerebral artery occlusion

MEK:

Mitogen-activated protein kinase kinase

mRS:

Modified Rankin Scale

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor-kappa B

NIHSS:

National Institutes of Health Stroke Scale

NLRP3:

NLR family pyrin domain containing 3

NMDA:

N-methyl d-aspartate

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2–related factor 2

OGD/R:

Oxygen and glucose deprivation/reoxygenation

PDK1:

3-Phosphoinositide-dependent kinase 1

PE:

Phosphoethanolamine

PERK:

Protein kinase RNA-like ER kinase

PHQ-9 scale:

Patient Health Questionnaire-9 scale

PI3K:

Phosphoinositide 3-kinase

PI(3)P:

Phosphatidylinositol 3-phosphate

PMCAO:

Permanent middle cerebral artery occlusion

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

Rheb:

Ras homolog enriched in brain

ROS:

Reactive oxygen species

SIRT1:

Sirtuin 1

sLOX-1:

Soluble LOX-1

TBI:

Traumatic brain injury

TIGAR:

Tp53-induced glycolysis and apoptosis regulator

tMCAO:

Transient middle cerebral artery occlusion

TNFα:

Tumor necrosis factor- α

tPA:

Tissue plasminogen activator

TRAF-2:

Tumor necrosis factor receptor-associated factor-2

TSC1 and TSC2:

Tuberous sclerosis proteins 1 and 2

ULK1/2:

Unc-51 like autophagy activating kinase

UPR:

Unfolded protein response

Vps34:

Vacuolar protein sorting 34

References

  1. Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21:7609. https://doi.org/10.3390/ijms21207609

    Article  CAS  PubMed Central  Google Scholar 

  2. Liu F, Lu J, Manaenko A, Tang J, Hu Q (2018) Mitochondria in ischemic stroke: new insight and implications. Aging Dis 9:924

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaudin A, Andrieux K, Couvreur P (2015) Nanomedicines and stroke: toward translational research. J Drug Deliv Sci Technol 30:278–299. https://doi.org/10.1016/j.jddst.2015.07.018

    Article  CAS  Google Scholar 

  4. Gabryel B, Kost A, Kasprowska D (2012) Neuronal autophagy in cerebral ischemia—a potential target for neuroprotective strategies? Pharmacol Rep 64:1–5. https://doi.org/10.1016/S1734-1140(12)70725-9

    Article  CAS  PubMed  Google Scholar 

  5. Frati G, Benedetto U, Biondi-Zoccai G, Sciarretta S (2015) Bridging the gap between translational and outcome research in cardiovascular disease. Biomed Res Int 2015:454680. https://doi.org/10.1155/2015/454680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lo EH, Ning M (2016) Mechanisms and challenges in translational stroke research. J Investig Med 64:827–829. https://doi.org/10.1136/jim-2016-000104

    Article  PubMed  Google Scholar 

  7. Lauer MS, Skarlatos S (2010) Translational research for cardiovascular diseases at the National Heart, Lung, and Blood Institute: moving from bench to bedside and from bedside to community. Circulation 121:929–933. https://doi.org/10.1161/CIRCULATIONAHA.109.917948

    Article  PubMed  PubMed Central  Google Scholar 

  8. Neuhaus AA, Couch Y, Hadley G, Buchan AM (2017) Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 140:2079–2092. https://doi.org/10.1093/brain/awx126

    Article  PubMed  Google Scholar 

  9. Mandal J, Ponnambath DK, Parija SC (2017) Ethics of translational medical research. Trop Parasitol 7:62. https://doi.org/10.4103/tp.TP_47_17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, Platt LD, Baez A, Esposito K (2010) Defining translational research: implications for training. Acad Med 85:470. https://doi.org/10.1097/ACM.0b013e3181ccd618

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischemic stroke: an integrated view. Trends Neurosci 22:391–397. https://doi.org/10.1016/S0166-2236(99)01401-0

    Article  CAS  PubMed  Google Scholar 

  12. O’Collins VE, Macleod MR, Donnan GA, Horky LL, Van Der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477. https://doi.org/10.1002/ana.20741

    Article  CAS  PubMed  Google Scholar 

  13. Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136. https://doi.org/10.1161/01.STR.0000025518.34157.51

    Article  PubMed  Google Scholar 

  14. Llovera G, Liesz A (2016) The next step in translational research: lessons learned from the first preclinical randomized controlled trial. J Neurochem 139:271–279. https://doi.org/10.1111/jnc.13516

    Article  CAS  PubMed  Google Scholar 

  15. Grewal AK, Singh N, Singh TG (2019) Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 97:1094–1101. https://doi.org/10.1139/cjpp-2019-0188

    Article  CAS  PubMed  Google Scholar 

  16. Grewal AK, Singh TG, Singh N (2020) Potential herbal drugs for ischemic stroke: a review. Plant Arch 20:3772–3783

    Google Scholar 

  17. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1:36–45

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaur H, Prakash A, Kaur Medhi B (2013) Drug therapy in stroke: from preclinical to clinical studies. Pharmacology 92:324–334. https://doi.org/10.1159/000356320

    Article  CAS  PubMed  Google Scholar 

  19. Editorial N (2013) Facilitating reproducibility. Nat Chem Biol 9:345

    Article  Google Scholar 

  20. Seyhan AA (2019) Lost in translation: the valley of death across preclinical and clinical divide–identification of problems and overcoming obstacles. Transl Med Commun 4:1–9. https://doi.org/10.1186/s41231-019-0050-7

    Article  Google Scholar 

  21. Thapa K, Khan H, Sharma U, Grewal AK, Singh TG (2020) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 31:118975. https://doi.org/10.1016/j.lfs.2020.118975

    Article  CAS  Google Scholar 

  22. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M (2020) Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci 14:51. https://doi.org/10.3389/fncel.2020.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R (2021) Reviving mitochondrial bioenergetics: a relevant approach in epilepsy. Mitochondrion. https://doi.org/10.1016/j.mito.2021.03.009

    Article  PubMed  Google Scholar 

  24. Rebai O, Amri M (2018) Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways. Neurotox Res 34:559–573

    Article  CAS  PubMed  Google Scholar 

  25. Yang JL, Mukda S, Chen SD (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol 163:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  27. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ariosa AR, Klionsky DJ (2016) Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med 94:1217–1227

    Article  PubMed  Google Scholar 

  29. Wang M, Lee H, Elkin K, Bardhi R, Guan L, Chandra A, Geng X, Ding Y (2020) Detrimental and beneficial effect of autophagy and a potential therapeutic target after ischemic stroke. Evid Based Complement Altern Med. https://doi.org/10.1155/2020/8372647

    Article  Google Scholar 

  30. Eskelinen EL (2005) Maturation of autophagic vacuoles in mammalian cells. Autophagy 1:1. https://doi.org/10.4161/auto.1.1.1270

    Article  CAS  PubMed  Google Scholar 

  31. Rami A (2009) Autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol 35:449–461. https://doi.org/10.1111/j.1365-2990.2009.01034.x

    Article  CAS  PubMed  Google Scholar 

  32. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. https://doi.org/10.1038/nrd3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM, Martinet W (2015) Autophagy in vascular disease. Circ Res 116:468–479. https://doi.org/10.1161/CIRCRESAHA.116.303804

    Article  CAS  PubMed  Google Scholar 

  34. Kroemer G (2015) Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Investig 125:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen P, Cescon M, Bonaldo P (2014) Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10:192–200. https://doi.org/10.4161/auto.26927

    Article  CAS  PubMed  Google Scholar 

  36. Vidal RL, Matus S, Bargsted L, Hetz C (2014) Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci 35:583–591. https://doi.org/10.1016/j.tips.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  37. Zhou XJ, Zhang H (2012) Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 8:1286–1299. https://doi.org/10.4161/auto.21212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang XP, Ding H, Lu JD, Tang YH, Deng BX, Deng CQ (2015) Autophagy in cerebral ischemia and the effects of traditional Chinese medicine. J Integr Med 13:289–296. https://doi.org/10.1016/S2095-4964(15)60187-X

    Article  PubMed  Google Scholar 

  39. Chen S, Wu H, Tang J, Zhang J, Zhang JH (2015) Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. Neurovascular events after subarachnoid hemorrhage. Springer, Cham, pp 39–46

    Book  Google Scholar 

  40. Chang P, Dong W, Zhang M, Wang Z, Wang Y, Wang T, Gao Y, Meng H, Luo B, Luo C, Chen X (2014) Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci 52:242–249

    Article  CAS  PubMed  Google Scholar 

  41. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11:28–45. https://doi.org/10.4161/15548627.2014.984267

    Article  CAS  PubMed  Google Scholar 

  42. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750. https://doi.org/10.1038/ncb2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Del-Daim MM (2021) Pharmacological modulation of ubiquitin-proteasome pathways in oncogenic signaling. Int J Mol Sci 22:11971. https://doi.org/10.3390/ijms222111971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769. https://doi.org/10.4161/auto.6412

    Article  CAS  PubMed  Google Scholar 

  45. Hou K, Xu D, Li F, Chen S, Li Y (2019) The progress of neuronal autophagy in cerebral ischemia stroke: mechanisms, roles and research methods. J Neurol Sci 400:72–82. https://doi.org/10.1016/j.jns.2019.03.015

    Article  PubMed  Google Scholar 

  46. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011. https://doi.org/10.1523/JNEUROSCI.15-02-01001.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121. https://doi.org/10.1016/j.brainres.2011.05.049

    Article  CAS  PubMed  Google Scholar 

  48. Deng YH, He HY, Yang LQ, Zhang PY (2016) Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke. Neural Regen Res 11:1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sodhi RK, Grewal AK, Madan J, Jhajj TG, Kumar R (2021) Recent approaches to target apoptosis in neurological disorders. Clinical perspectives and targeted therapies in apoptosis. Academic Press, Cambridge, pp 217–283. https://doi.org/10.1016/B978-0-12-815762-6.00008-1

    Chapter  Google Scholar 

  50. Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72:1513–1527. https://doi.org/10.1111/jphp.13336

    Article  CAS  PubMed  Google Scholar 

  51. Zhang T, Lu D, Yang W, Shi C, Zang J, Shen L, Mai H, Xu A (2018) HMG-CoA reductase inhibitors relieve endoplasmic reticulum stress by autophagy inhibition in rats with permanent brain ischemia. Front Neurosci 12:405. https://doi.org/10.3389/fnins.2018.00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu J, Li X, Matei N, McBride D, Tang J, Yan M, Zhang JH (2018) Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats. Exp Neurol 307:12–23. https://doi.org/10.1016/j.expneurol.2018.05.022

    Article  CAS  PubMed  Google Scholar 

  53. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiol Dis 32:329–339. https://doi.org/10.1016/j.nbd.2008.07.022

    Article  PubMed  Google Scholar 

  54. Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 444:182–188. https://doi.org/10.1016/j.bbrc.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  55. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ (2006) Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169:566–583. https://doi.org/10.2353/ajpath.2006.051066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Du L, Hickey RW, Bayir H, Watkins SC, Tyurin VA, Guo F, Kochanek PM, Jenkins LW, Ren J, Gibson G, Chu CT (2009) Starving neurons show sex difference in autophagy. J Biol Chem 284:2383–2396. https://doi.org/10.1074/jbc.M804396200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J, McCullough LD (2010) Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab 30:480–492. https://doi.org/10.1038/jcbfm.2009.255

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Cao Y, Liu C (2020) Autophagy and ischemic stroke. Autophagy: biology and diseases. Springer, Singapore, pp 111–134. https://doi.org/10.1007/978-981-15-4272-5_7

    Chapter  Google Scholar 

  59. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, Zhu YJ, Wang Q, Wang K, Luo BY (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70:314–322. https://doi.org/10.1097/NEN.0b013e31821352bd

    Article  CAS  PubMed  Google Scholar 

  60. Adhami F, Schloemer A, Kuan CY (2007) The roles of autophagy in cerebral ischemia. Autophagy 3:42–44. https://doi.org/10.4161/auto.3412

    Article  CAS  PubMed  Google Scholar 

  61. Martens S (2018) A division of labor in mTORC1 signaling and autophagy. Sci Signal. https://doi.org/10.1126/scisignal.aav3530

    Article  PubMed  Google Scholar 

  62. Sciarretta S, Forte M, Frati G, Sadoshima J (2018) New insights into the role of mTOR signaling in the cardiovascular system. Circ Res 122:489–505. https://doi.org/10.1161/CIRCRESAHA.117.311147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shi B, Ma M, Zheng Y, Pan Y, Lin X (2019) mTOR and Beclin1: two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol 234:12562–12568. https://doi.org/10.1002/jcp.28125

    Article  CAS  PubMed  Google Scholar 

  64. Hei C, Liu P, Yang X, Niu J, Li PA (2017) Inhibition of mTOR signaling confers protection against cerebral ischemic injury in acute hyperglycemic rats. Int J Biol Sci 13:878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Zhu Y, Zhong X, Chen X, Wang J, Ying G (2019) Crosstalk between autophagy and cerebral ischemia. Front Neurosci 12:1022. https://doi.org/10.3389/fnins.2018.01022

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ke R, Xu Q, Li C, Luo L, Huang D (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42:384–392. https://doi.org/10.1002/cbin.10915

    Article  CAS  PubMed  Google Scholar 

  67. Weisová P, Dávila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH (2011) Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 14:1863–1876. https://doi.org/10.1089/ars.2010.3544

    Article  CAS  PubMed  Google Scholar 

  68. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800. https://doi.org/10.1016/j.molcel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thapa K, Singh TG, Kaur A (2021) Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 21:119843. https://doi.org/10.1016/j.lfs.2021.119843

    Article  CAS  Google Scholar 

  70. Wang JF, Mei ZG, Fu Y, Yang SB, Zhang SZ, Huang WF, Xiong L, Zhou HJ, Tao W, Feng ZT (2018) Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regen Res 13:989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thi EP, Reiner NE (2012) Phosphatidylinositol 3-kinases and their roles in phagosome maturation. J Leukoc Biol 92:553–566. https://doi.org/10.1189/jlb.0212053

    Article  CAS  PubMed  Google Scholar 

  72. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B (2019) The relation between PI3K/AKT signalling pathway and cancer. Gene 698:120–128. https://doi.org/10.1016/j.gene.2019.02.076

    Article  CAS  PubMed  Google Scholar 

  73. Yudushkin I (2019) Getting the Akt together: guiding intracellular Akt activity by PI3K. Biomolecules 9:67. https://doi.org/10.3390/biom9020067

    Article  CAS  PubMed Central  Google Scholar 

  74. Toker A, Marmiroli S (2014) Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 55:28–38. https://doi.org/10.1016/j.jbior.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  75. Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. J Mol Cell Biol 32:2–11. https://doi.org/10.1128/MCB.06159-11

    Article  CAS  Google Scholar 

  76. Chen AC, Arany PR, Huang YY, Tomkinson EM, Saleem T, Yull FE, Blackwell TS, Hamblin MR (2009) Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. In: Mechanisms for low-light therapy IV 2009 Feb 18, Vol. 7165, International Society for Optics and Photonics, p. 71650B

  77. Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL (2013) Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience 246:117–132. https://doi.org/10.1016/j.neuroscience.2013.04.054

    Article  CAS  PubMed  Google Scholar 

  78. Gupta A, Shah K, Oza MJ, Behl T (2019) Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 109:484–492. https://doi.org/10.1016/j.biopha.2018.10.155

    Article  CAS  PubMed  Google Scholar 

  79. Hou Y, Wang J, Feng J (2019) The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. Drug Des Dev Ther 13:1135

    Article  CAS  Google Scholar 

  80. Mo Y, Sun YY, Liu KY (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15:1388

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang F, Wang H, Lu C, Lu H (2018) HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning. J Mol Neurosci 66:238–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, Shen Z, Jiang L, Wang L, Yang W, Luo J (2017) BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13:1754–1766. https://doi.org/10.1080/15548627.2017.1357792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mannan A, Garg N, Singh TG, Kang HK (2021) Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury. Neurochem Res 20:1–32

    Google Scholar 

  84. Xu F, Li J, Ni W, Shen YW, Zhang XP (2013) Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS ONE 8:e55080. https://doi.org/10.1371/journal.pone.0055080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi Z, Dong W, Shi W, Wang R, Zhang C, Zhao Y, Ji X, Liu KJ, Luo Y (2015) Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res 6:198–206

    Article  CAS  PubMed  Google Scholar 

  86. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA (2007) Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539. https://doi.org/10.1038/sj.emboj.7601689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou YY, Li Y, Jiang WQ, Zhou LF (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35:e00199. https://doi.org/10.1042/BSR20140141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferrer I, Friguls B, Dalfó E, Planas AM (2003) Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 105:425–437

    Article  CAS  PubMed  Google Scholar 

  89. Li H, Zhou S, Wu L, Liu K, Zhang Y, Ma G, Wang L (2015) The role of p38MAPK signal pathway in the neuroprotective mechanism of limb postconditioning against rat cerebral ischemia/reperfusion injury. J Neurol Sci 357:270–275. https://doi.org/10.1016/j.jns.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  90. Song YQ, Zou HL, Zhao YJ, Yu LQ, Tan ZX, Kong R (2016) Activation of p38-mitogen-activated protein kinase contributes to ischemia reperfusion in rat brain. Genet Mol Res 15:1–3

    Google Scholar 

  91. Qi Z, Chen L (2019) Endoplasmic reticulum stress and autophagy. Autophagy: Biol Dis 1206:167–177

    CAS  Google Scholar 

  92. Nakka VP, Prakash-Babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53:532–544

    Article  CAS  PubMed  Google Scholar 

  93. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2 α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239

    Article  CAS  PubMed  Google Scholar 

  94. Chen W, Sun Y, Liu K, Sun X (2014) Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res 9:1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W (2017) Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab 37:1069–1079. https://doi.org/10.1177/0271678X16650218

    Article  CAS  PubMed  Google Scholar 

  96. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14:2215–2231. https://doi.org/10.1089/ars.2010.3554

    Article  CAS  PubMed  Google Scholar 

  97. Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G (2013) Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol 23(5):310–322

    Article  CAS  PubMed  Google Scholar 

  98. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134. https://doi.org/10.1016/j.cell.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  99. Puissant A, Fenouille N, Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2:397

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahalingaiah PK, Singh KP (2014) Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS ONE 9:e87371. https://doi.org/10.1371/journal.pone.0087371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Cell Mol Biol 31:3616–3629. https://doi.org/10.1128/MCB.05164-11

    Article  CAS  Google Scholar 

  102. Nabavi SF, Sureda A, Sanches-Silva A, Pandima Devi K, Ahmed T, Shahid M, Sobarzo-Sánchez E, Dacrema M, Daglia M, Braidy N, Vacca RA (2019) Novel therapeutic strategies for stroke: the role of autophagy. Crit Rev Clin Lab Sci 56:182–199. https://doi.org/10.1080/10408363.2019.1575333

    Article  CAS  PubMed  Google Scholar 

  103. Li L, Tan J, Miao Y, Lei P, Zhang Q (2015) ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35:615–621

    Article  PubMed  Google Scholar 

  104. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760. https://doi.org/10.1038/sj.emboj.7601623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L, Zhuang X, Jiang X (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 11:84. https://doi.org/10.3389/fphar.2020.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, Liang X, Zhu G, Xu Z (2018) Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci 64:129–139

    Article  CAS  PubMed  Google Scholar 

  107. Luo T, Liu G, Ma H, Lu B, Xu H, Wang Y, Wu J, Ge P, Liang J (2014) Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. Int J Mol Sci 15:15426–15442. https://doi.org/10.3390/ijms150915426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pan J, Li X, Guo F, Yang Z, Zhang L, Yang C (2019) Ginkgetin attenuates cerebral ischemia–reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep. https://doi.org/10.1042/BSR20191452

    Article  PubMed  PubMed Central  Google Scholar 

  109. Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE, Drew PD, Racke MK (2002) Peroxisome proliferator-activated receptor-γ agonist 15-deoxy-Δ12, 1412, 14-prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol Res 168:2508–2515. https://doi.org/10.4049/jimmunol.168.5.2508

    Article  CAS  Google Scholar 

  110. Yang G, Wang N, Seto SW, Chang D, Liang H (2018) Hydroxysafflor yellow a protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway. Brain Res Bull 140:243–257. https://doi.org/10.1016/j.brainresbull.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  111. Buller KM, Carty ML, Reinebrant HE, Wixey JA (2009) Minocycline: a neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 87:599–608. https://doi.org/10.1002/jnr.21890

    Article  CAS  PubMed  Google Scholar 

  112. Majid A (2014) Neuroprotection in stroke: past, present, and future. Int Sch Res Not 2014(1):17

    Google Scholar 

  113. Dong W, Xiao S, Cheng M, Ye X, Zheng G (2016) Minocycline induces protective autophagy in vascular endothelial cells exposed to an in vitro model of ischemia/reperfusion-induced injury. Biomed Rep 4:173–177. https://doi.org/10.3892/br.2015.554

    Article  CAS  PubMed  Google Scholar 

  114. Lu Y, Xiao G, Luo W (2016) Minocycline suppresses NLRP3 inflammasome activation in experimental ischemic stroke. NeuroImmunoModulation 23:230–238. https://doi.org/10.1159/000452172

    Article  CAS  PubMed  Google Scholar 

  115. Wang S, Wang C, Wang L, Cai Z (2020) Minocycline inhibits mTOR signaling activation and alleviates behavioral deficits in the Wistar rats with acute ischemia stroke. CNS Neurol Disord Drug Targets 19:791–799. https://doi.org/10.2174/1871527319999200831153748

    Article  CAS  PubMed  Google Scholar 

  116. Mostert JP, Koch MW, Heerings M, Heersema DJ, De Keyser J (2008) Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther 14:153–164. https://doi.org/10.1111/j.1527-3458.2008.00040.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McAllister BB, Spanswick SC, Patel PP, Barneto AA, Dyck RH (2015) The effects of chronic fluoxetine treatment following injury of medial frontal cortex in mice. Behav Brain Res 290:102–116. https://doi.org/10.1016/j.bbr.2015.04.049

    Article  CAS  PubMed  Google Scholar 

  118. Lee JY, Kim HS, Choi HY, Oh TH, Yune TY (2012) Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood–spinal cord barrier after spinal cord injury. Brain 135:2375–2389. https://doi.org/10.1093/brain/aws171

    Article  PubMed  Google Scholar 

  119. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10:123–130. https://doi.org/10.1016/S1474-4422(10)70314-8

    Article  CAS  PubMed  Google Scholar 

  120. Li JR, Xu HZ, Nie S, Peng YC, Fan LF, Wang ZJ, Wu C, Yan F, Chen JY, Gu C, Wang C (2017) Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subarachnoid hemorrhage in rats. J Neuroinflamm 14:1–4

    Article  Google Scholar 

  121. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00258-8

    Article  PubMed  Google Scholar 

  122. Li WL, Cai HH, Wang B, Chen L, Zhou QG, Luo CX, Liu N, Ding XS, Zhu DY (2009) Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res 87:112–122. https://doi.org/10.1002/jnr.21829

    Article  CAS  PubMed  Google Scholar 

  123. Castilla-Guerra L, del Carmen F-M, Angel Colmenero-Camacho M (2016) Statins in stroke prevention: present and future. Curr Pharm Des 22:4638–4644

    Article  CAS  PubMed  Google Scholar 

  124. Ní Chróinín D, Asplund K, Åsberg S, Callaly E, Cuadrado-Godia E, Díez-Tejedor E, Di Napoli M, Engelter ST, Furie KL, Giannopoulos S, Gotto AM Jr (2013) Statin therapy and outcome after ischemic stroke: systematic review and meta-analysis of observational studies and randomized trials. Stroke 44:448–456. https://doi.org/10.1161/STROKEAHA.112.668277

    Article  CAS  PubMed  Google Scholar 

  125. Merwick Á, Albers GW, Arsava EM, Ay H, Calvet D, Coutts SB, Cucchiara BL, Demchuk AM, Giles MF, Mas JL, Olivot JM (2013) Reduction in early stroke risk in carotid stenosis with transient ischemic attack associated with statin treatment. Stroke 44:2814–2820. https://doi.org/10.1161/STROKEAHA.113.001576

    Article  CAS  PubMed  Google Scholar 

  126. Al-Khaled M, Matthis C, Eggers J (2014) Statin treatment in patients with acute ischemic stroke. Int J Stroke 9:597–601. https://doi.org/10.1111/ijs.12256

    Article  PubMed  Google Scholar 

  127. Flint AC, Kamel H, Navi BB, Rao VA, Faigeles BS, Conell C, Klingman JG, Sidney S, Hills NK, Sorel M, Cullen SP (2012) Statin use during ischemic stroke hospitalization is strongly associated with improved poststroke survival. Stroke 43:147–154. https://doi.org/10.1161/STROKEAHA.111.627729

    Article  CAS  PubMed  Google Scholar 

  128. Zhang X, Deguchi S, Deguchi K, Ohta Y, Yamashita T, Shang J, Tian F, Liu N, Liu W, Ikeda Y, Matsuura T (2011) Amlodipine and atorvastatin exert protective and additive effects via antiapoptotic and antiautophagic mechanisms after transient middle cerebral artery occlusion in Zucker metabolic syndrome rats. J Neurosci Res 89:1228–1234. https://doi.org/10.1002/jnr.22633

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Yang H, Jia G, Li L, Chen H, Bi J, Wang C (2018) The synergistic neuroprotective effects of combined rosuvastatin and resveratrol pretreatment against cerebral ischemia/reperfusion injury. J Stroke Cerebrovasc Dis 27:1697–1704. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.01.033

    Article  PubMed  Google Scholar 

  130. Carloni S, Balduini W (2020) Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 324:113117. https://doi.org/10.1016/j.expneurol.2019.113117

    Article  CAS  PubMed  Google Scholar 

  131. Khan H, Tiwari P, Kaur A, Singh TG (2021) Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol 20:1–5. https://doi.org/10.1007/s12035-021-02387-w

    Article  CAS  Google Scholar 

  132. Wang L, Cui W, Nan G, Yu Y (2015) Meta-analysis reveals protective effects of vitamin B on stroke patients. Transl Neurosci 6:150–156. https://doi.org/10.1515/tnsci-2015-0014

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hankey GJ, Eikelboom JW (2001) Homocysteine and stroke. Curr Opin Neurol 14:95–102

    Article  CAS  PubMed  Google Scholar 

  134. Boysen G, Brander T, Christensen H, Gideon R, Truelsen T (2003) Homocysteine and risk of recurrent stroke. Stroke 34:1258–1261. https://doi.org/10.1161/01.STR.0000069017.78624.37

    Article  CAS  PubMed  Google Scholar 

  135. Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, Yen PM (2016) Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis 7:e2513. https://doi.org/10.1126/scitranslmed.aac9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen H, Tung YC, Li B, Iqbal K, Grundke-Iqbal I (2007) Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging 28:1148–1162. https://doi.org/10.1016/j.neurobiolaging.2006.05.036

    Article  CAS  PubMed  Google Scholar 

  137. Sharma VK, Singh TG (2020) Insulin resistance and bioenergetic manifestations: targets and approaches in Alzheimer’s disease. Life Sci 12:118401

    Article  Google Scholar 

  138. Heiss WD, Brainin M, Bornstein NM, Tuomilehto J, Hong Z (2012) Cerebrolysin in patients with acute ischemic stroke in Asia: results of a double-blind, placebo-controlled randomized trial. Stroke 43:630–636. https://doi.org/10.1161/STROKEAHA.111.628537

    Article  CAS  PubMed  Google Scholar 

  139. Schwab M, Antonow-Schlorke I, Zwiener U, Bauer R (1998) Brain-derived peptides reduce the size of cerebral infarction and loss of MAP2 immunoreactivity after focal ischemia in rats. Ageing and dementia. Springer, Vienna, pp 299–311. https://doi.org/10.1007/978-3-7091-6467-9_26

    Chapter  Google Scholar 

  140. Ren J, Sietsma D, Qiu S, Moessler H, Finklestein SP (2007) Cerebrolysin enhances functional recovery following focal cerebral infarction in rats. Restor Neurol Neurosci 25:25–31

    CAS  PubMed  Google Scholar 

  141. Xing S, Zhang J, Dang C, Liu G, Zhang Y, Li J, Fan Y, Pei Z, Zeng J (2014) Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci 337:104–111. https://doi.org/10.1016/j.jns.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  142. Ren Y, Ma X, Wang T, Cheng B, Ren L, Dong Z, Liu H (2021) The cerebroprotein hydrolysate-I plays a neuroprotective effect on cerebral ischemic stroke by inhibiting MEK/ERK1/2 signaling pathway in rats. Neuropsychiatr Dis Treat 17:2199. https://doi.org/10.2147/NDT.S313807

    Article  PubMed  PubMed Central  Google Scholar 

  143. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 1761:147399. https://doi.org/10.1016/j.brainres.2021.147399

    Article  CAS  Google Scholar 

  144. Wu F, Xu K, Xu K, Teng C, Zhang M, Xia L, Zhang K, Liu L, Chen Z, Xiao J, Wu Y (2020) Dl-3n-butylphthalide improves traumatic brain injury recovery via inhibiting autophagy-induced blood-brain barrier disruption and cell apoptosis. J Cell Mol Med 24:1220–1232. https://doi.org/10.1111/jcmm.14691

    Article  CAS  PubMed  Google Scholar 

  145. Thapa K, Khan H, Singh TG, Kaur A (2021) Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci. https://doi.org/10.1007/s12031-021-01841-7

    Article  PubMed  Google Scholar 

  146. Zhang T, Wang H, Li Q, Huang J, Sun X (2014) Modulating autophagy affects neuroamyloidogenesis in an in vitro ischemic stroke model. Neuroscience 263:130–137. https://doi.org/10.1016/j.neuroscience.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  147. Wang Z, Kawabori M, Houkin K (2020) FTY720 (Fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment. Curr Med Chem 27:2979–2993. https://doi.org/10.2174/0929867326666190308133732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li X, Wang MH, Qin C, Fan WH, Tian DS, Liu JL (2017) Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS ONE 12:e0188748. https://doi.org/10.1371/journal.pone.0188748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zheng Y, Wu Z, Yi F, Orange M, Yao M, Yang B, Liu J, Zhu H (2018) By activating Akt/eNOS bilobalide B inhibits autophagy and promotes angiogenesis following focal cerebral ischemia reperfusion. Cell Physiol Biochem 47:604–616. https://doi.org/10.1159/000490016

    Article  CAS  PubMed  Google Scholar 

  150. Wu R, Shui L, Wang S, Song Z, Tai F (2016) Bilobalide alleviates depression-like behavior and cognitive deficit induced by chronic unpredictable mild stress in mice. Behav Pharmacol 27:596–605. https://doi.org/10.1097/FBP.0000000000000252

    Article  CAS  PubMed  Google Scholar 

  151. Abe K, Yuki S, Kogure K (1988) Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 19:480–485. https://doi.org/10.1161/01.STR.19.4.480

    Article  CAS  PubMed  Google Scholar 

  152. Edaravone Acute Infarction Study Group (2003) Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis 15:222–229

    Article  Google Scholar 

  153. Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, Goto K, Abe K (2009) Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Intern Med J 48:593–596. https://doi.org/10.2169/internalmedicine.48.1871

    Article  Google Scholar 

  154. Liu N, Shang J, Tian F, Nishi H, Abe K (2011) In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res 1397:66–75. https://doi.org/10.1016/j.brainres.2011.04.038

    Article  CAS  PubMed  Google Scholar 

  155. Reis C, Akyol O, Ho WM, Araujo C, Huang L, Applegate R II, Zhang JH (2017) Phase I and phase II therapies for acute ischemic stroke: an update on currently studied drugs in clinical research. BioMed Res Int. https://doi.org/10.1155/2017/4863079

    Article  PubMed  PubMed Central  Google Scholar 

  156. Modi J, Menzie-Suderam J, Xu H, Trujillo P, Medley K, Marshall ML, Tao R, Prentice H, Wu JY (2020) Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci 27:1–9

    Article  Google Scholar 

  157. Menzie-Suderam JM, Modi J, Xu H, Bent A, Trujillo P, Medley K, Jimenez E, Shen J, Marshall M, Tao R, Prentice H (2020) Granulocyte-colony stimulating factor gene therapy as a novel therapeutics for stroke in a mouse model. J Biomed Sci 27:1–22

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India, for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: conceived and designed the experiments: TGS. Analyzed the data: AK. Wrote the manuscript: PK, HK. Visualization: AK, TGS. Editing of the Manuscript: HK, AK, TGS Critically reviewed the article: TGS. Supervision: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalra, P., Khan, H., Kaur, A. et al. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 47, 825–843 (2022). https://doi.org/10.1007/s11064-021-03500-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03500-0

Keywords

Navigation