Skip to main content

Advertisement

Log in

DHCR24 Knockdown Lead to Hyperphosphorylation of Tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites by Membrane Lipid-Raft Dependent PP2A Signaling in SH-SY5Y Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Accumulating data suggest that the downregulation of DHCR24 is linked to the pathological risk factors of AD, denoting a potential role of DHCR24 in AD pathogenesis. However, it remains unclear whether the downregulation of DHCR24 affects the abnormal heper-phosphorylation of tau protein, which is involved in tauopathy. In present papers, immunofluorescence and Filipin III fluorescence results showed that DHCR24 knockdown significantly lowered the level of plasma membrane cholesterol and expression level of membrane lipid-raft structural protein caveolin-1; and overexpression of DHCR24 could increase the plasma membrane cholesterol levels and facilitating caveolae structure through increase the expression of caveolin-1. PP2A is the key phosphatase involving in tau phosphorylation, which is localized in cholesterol-dependent caveola/raft lipid domains. Here, the PP2A activity was detected by western blot assay. Interestingly, the level of p-PP2Ac at Y307 (inactive) and p-GSK3β at Y216 (active) in the downstream of the PP2A signal pathway were both significantly increased in silencing DHCR24 SH-SY5Y cells, which denoted an inhibition of the PP2A and activation of GSK3β signaling. Conversely, overexpression of DHCR24 blunted the inhibition effect of PP2A and activation of GSK3β. Besides, in the SH-SY5Y cell lines we demonstrated that DHCR24 knockdown obviously induced hyperphosphorylation of tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites. In contrast, DHCR24 overexpression protects neuronal SH-SY5Y cells against the hyperphosphorylation of tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites. Furthermore, PP2A activator D-erythro-Sphingosine (DES) also obviously inhibited the hyperphosphorylation of tau induced by DHCR24 knockdown. Collectively, our findings firstly confirmed that DHCR24 knockdown obviously induced abnormal hyperphosphorylation of tau by a novel lipid raft-dependent PP2A signaling. We propose that DHCR24 downregulation led to altered cholesterol synthesis as a potential mechanism in the progression of tau hyperphosphorylation involving in AD and other tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, Levkau B, Nitsch R (2000) The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci 20(19):7345–7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zu H, Liu X, Yao K (2020) DHCR24 overexpression modulates microglia polarization and inflammatory response via Akt/GSK3β signaling in Aβ treated BV-2 cells. Life Sci 260:118470

    Article  CAS  PubMed  Google Scholar 

  3. Önmez A, Alpay M, Torun S, Şahin I, Öneç K (2020) Değirmenci Y (2020) Serum seladin-1 levels in diabetes mellitus and Alzheimer’s disease patients. Acta Neurol Belg 120(6):1399–1404

    Article  PubMed  Google Scholar 

  4. Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H (2019) Interactions of aromatase and seladin-1: a neurosteroidogenic and gender perspective. Transl Neurosci 10:264–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luciani P, Ferruzzi P, Arnaldi G, Crescioli C, Benvenuti S, Nesi G, Valeri A, Greeve I, Serio M, Mannelli M, Peri A (2004) Expression of the novel adrenocorticotropin-responsive gene selective Alzheimer’s disease indicator-1 in the normal adrenal cortex and in adrenocortical adenomas and carcinomas. J Clin Endocrinol Metab 89(3):1332–1339

    Article  CAS  PubMed  Google Scholar 

  6. Peri A (2016) Neuroprotective effects of estrogens: the role of cholesterol. J Endocrinol Investig 39(1):11–18

    Article  CAS  Google Scholar 

  7. Zerenturk E, Sharpe L, Ikonen E, Brown A (2013) Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 52(4):666–680

    Article  CAS  PubMed  Google Scholar 

  8. Zerenturk E, Kristiana I, Gill S (1821) Brown A (2012) The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1). Biochim et Biophys Acta 9:1269–1277

    Google Scholar 

  9. Zhou C, Gao Z, Wang J, Wu M, Hu S, Chen F, Liu J, Pan H, Yan C (2018) Lead exposure induces Alzheimers’s disease (AD)-like pathology and disturbes cholesterol metabolism in the young rat brain. Toxicol Lett 296:173–183

    Article  CAS  PubMed  Google Scholar 

  10. Costa A, Joaquim H, Nunes V, Kerr D, Ferreira G, Forlenza O, Gattaz W, Talib L (2018) Donepezil effects on cholesterol and oxysterol plasma levels of Alzheimer’s disease patients. Eur Arch Psychiatry Clin Neurosci 268(5):501–507

    Article  PubMed  Google Scholar 

  11. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S (2019) Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol 190:104–114

    Article  CAS  PubMed  Google Scholar 

  12. Iivonen S, Hiltunen M, Alafuzoff I, Mannermaa A, Kerokoski P, Puoliväli J, Salminen A, Helisalmi S, Soininen H (2002) Seladin-1 transcription is linked to neuronal degeneration in Alzheimer’s disease. Neuroscience 113(2):301–310

    Article  CAS  PubMed  Google Scholar 

  13. Stock JB (2009) Protein phosphatase 2A: A novel pharmaceutical target for the treatment of Alzheimer’s disease. Alzheimers Dement 5(4):P319

    Google Scholar 

  14. Zhang H, Wang X, Xu P, Ji X, Chi T, Liu P, Zou L (2020) Tolfenamic acid inhibits GSK-3β and PP2A mediated tau hyperphosphorylation in Alzheimer’s disease models. J Physiol Sci 70(1):29

    Article  CAS  PubMed  Google Scholar 

  15. Sontag JM, Nunbhakdi-Craig V, Sontag E (2013) Leucine carboxyl methyltransferase 1 (LCMT1)-dependent methylation regulates the association of protein phosphatase 2A and Tau protein with plasma membrane microdomains in neuroblastoma cells. J Biol Chem 288(38):27396–27405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiong Y, Jing X, Zhou X, Wang X, Yang Y, Sun X, Qiu M, Cao F, Lu Y, Liu R, Wang J (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34(3):745–756

    Article  CAS  PubMed  Google Scholar 

  17. Buescher J, Phiel C (2010) A noncatalytic domain of glycogen synthase kinase-3 (GSK-3) is essential for activity. J Biol Chem 285(11):7957–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim et Biophys Acta 1768(6):1311–1324

    Article  CAS  Google Scholar 

  19. Rao M, Peachman K, Alving C, Rothwell S (2003) Depletion of cellular cholesterol interferes with intracellular trafficking of liposome-encapsulated ovalbumin. Immunol Cell Biol 81(6):415–423

    Article  CAS  PubMed  Google Scholar 

  20. Biswas A, Kashyap P, Datta S, Sengupta T, Sinha B (2019) Cholesterol depletion by MβCD enhances cell membrane tension and its variations-reducing integrity. Biophys J 116(8):1456–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krishna A, Sengupta D (2019) Interplay between membrane curvature and cholesterol: role of palmitoylated caveolin-1. Biophys J 116(1):69–78

    Article  CAS  PubMed  Google Scholar 

  22. Alonso A, Cohen L (2018) Our tau tales from normal to pathological behavior. J Alzheimer’s Dis 64:S507–S516

    Article  CAS  Google Scholar 

  23. Iqbal K, Liu F, Gong C, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takashima A (2013) Tauopathies and tau oligomers. J Alzheimer’s Dis 37(3):565–568

    Article  Google Scholar 

  25. Strang K, Golde T, Giasson B (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig 99(7):912–928

    Article  PubMed  Google Scholar 

  26. Saha P, Sen N (2019) Tauopathy: a common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 178:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iqbal K, Liu F, Gong C, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerson J, Mudher A, Kayed R (2016) Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 51(6):482–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alonso A, Beharry C, Corbo C, Cohen L (2016) Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimer’s Dement 12(10):1090–1097

    Article  Google Scholar 

  30. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini S, Mandelkow E, Mandelkow E, Buée L, Goedert M, Brion J (2017) What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 5(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di J, Cohen L, Corbo C, Phillips G, El Idrissi A, Alonso A (2016) Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 6:20833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luu W, Hart-Smith G, Sharpe L, Brown A (2015) The terminal enzymes of cholesterol synthesis, DHCR24 and DHCR7, interact physically and functionally. J Lipid Res 56(4):888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu X, Kambe F, Cao X, Yoshida T, Ohmori S, Murakami K, Kaji T, Ishii T, Zadworny D, Seo H (2006) DHCR24-knockout embryonic fibroblasts are susceptible to serum withdrawal-induced apoptosis because of dysfunction of caveolae and insulin-Akt-Bad signaling. Endocrinology 147(6):3123–3132

    Article  CAS  PubMed  Google Scholar 

  34. Korade Z, Kenworthy A (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55(8):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R (2019) Lipid and lipid raft alteration in aging and neurodegenerative diseases: a window for the development of new biomarkers. Int J Mol Sci 20(15):3810

    Article  CAS  PubMed Central  Google Scholar 

  36. Crameri A, Biondi E, Kuehnle K, Lütjohann D, Thelen K, Perga S, Dotti C, Nitsch R, Ledesma M, Mohajeri M (2006) The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 25(2):432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peri A, Serio M (2008) Neuroprotective effects of the Alzheimer’s disease-related gene seladin-1. J Mol Endocrinol 41(5):251–261

    Article  CAS  PubMed  Google Scholar 

  38. Waterham H, Koster J, Romeijn G, Hennekam R, Vreken P, Andersson H, FitzPatrick D, Kelley R, Wanders R (2001) Mutations in the 3beta-hydroxysterol Delta24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet 69(4):685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Habbab W, Aoude I, Palangi F, Abdulla S, Ahmed T (2019) The anti-tumor agent sodium selenate decreases methylated PP2A, increases GSK3betaY216 phosphorylation, including tau disease epitopes and reduces neuronal excitability in SHSY-5Y neurons. Int J Mol Sci 20(4):844

    Article  CAS  PubMed Central  Google Scholar 

  40. Raina V, Gupta S, Yadav S, Surolia A (2013) Simvastatin induced neurite outgrowth unveils role of cell surface cholesterol and acetyl CoA carboxylase in SH-SY5Y cells. PLoS ONE 8(9):e74547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang PY, Liu P, Weng J, Sontag E, Anderson RG (2003) A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J 22(11):2658–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dobrowsky R, Kamibayashi C, Mumby M, Hannun Y (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268(21):15523–15530

    Article  CAS  PubMed  Google Scholar 

  43. Martin L, Page G, Terro F (2011) Tau phosphorylation and neuronal apoptosis induced by the blockade of PP2A preferentially involve GSK3β. Neurochem Int 59(2):235–250

    Article  CAS  PubMed  Google Scholar 

  44. Landrieu I, Smet-Nocca C, Amniai L, Louis J, Wieruszeski J, Goris J, Janssens V, Lippens G (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PLoS ONE 6(6):e21521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin L, Latypova X, Wilson C, Magnaudeix A, Perrin M, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49

    Article  CAS  PubMed  Google Scholar 

  46. Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong C, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimer’s Dis 19(4):1221–1229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Work was supported by research grants 201740209 from the Shanghai Health and Medical Development Foundation, and JSZK2015A05 from the Shanghai Jinshan District Key Medical Foundation, Shanghai, China.

Author information

Authors and Affiliations

Authors

Contributions

HZ and XB designed the study and wrote the manuscript. ZQ contributed to the experimental work about tau phosphorylation and analysis of PP2A Signaling in SH-SY5Y Cells. YZ and MZ contributed to the tansfection work of SH-SY5Y cells. YX, JZ, and KY provided their experimental assistance and TEM work. XB and ZQ contributed to analysis of data. All authors have read the manuscript and provided the input.

Corresponding authors

Correspondence to Xiaojing Bai or Hengbing Zu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors have approved the final article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Zhang, Y., Yao, K. et al. DHCR24 Knockdown Lead to Hyperphosphorylation of Tau at Thr181, Thr231, Ser262, Ser396, and Ser422 Sites by Membrane Lipid-Raft Dependent PP2A Signaling in SH-SY5Y Cells. Neurochem Res 46, 1627–1640 (2021). https://doi.org/10.1007/s11064-021-03273-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03273-6

Keywords

Navigation