Skip to main content

Advertisement

Log in

Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycolysis is the core of intermediate metabolism, an ancient pathway discovered in the heydays of classic biochemistry. A hundred years later, it remains a matter of active research, clinical interest and is not devoid of controversy. This review examines topical aspects of glycolysis in the brain, a tissue characterized by an extreme dependence on glucose. The limits of glycolysis are reviewed in terms of flux control by glucose transporters, intercellular lactate shuttling and activity-dependent glycolysis in astrocytes and neurons. What is the site of glycogen mobilization and aerobic glycolysis in brain tissue? We scrutinize the pervasive notions that glycolysis is fast and that catalysis is channeled through supramolecular assemblies. In brain tissue, most glycolytic enzymes are catalytically silent. What then is their function?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang J, Wang YT, Miller JH, Day MM, Munger JC, Brookes PS (2018) Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell Rep 23:2617–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barros LF, Bolanos JP, Bonvento G, Bouzier-Sore AK, Brown A, Hirrlinger J, Kasparov S, Kirchhoff F, Murphy AN, Pellerin L, Robinson MB, Weber B (2018) Current technical approaches to brain energy metabolism. Glia 66:1138–1159

    Article  PubMed  Google Scholar 

  3. Barros LF, Bittner CX, Loaiza A, Porras OH (2007) A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55:1222–1237

    Article  CAS  PubMed  Google Scholar 

  4. Barros LF, Porras OH, Bittner CX (2005) Why glucose transport in the brain matters for PET. Trends Neurosci 28:117–119

    Article  CAS  PubMed  Google Scholar 

  5. Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, White E, Toettcher JE, Rabinowitz JD (2018) Four key steps control glycolytic flux in mammalian cells. Cell Syst 7:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barros LF, San MA, Ruminot I, Sandoval PY, Fernandez-Moncada I, Baeza-Lehnert F, Arce-Molina R, Contreras-Baeza Y, Cortes-Molina F, Galaz A, Alegria K (2017) Near-critical GLUT1 and neurodegeneration. J Neurosci Res 95:2267–2274

    Article  CAS  PubMed  Google Scholar 

  7. Zilberter Y, Zilberter M (2017) The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J Neurosci Res 95:2217–2235

    Article  CAS  PubMed  Google Scholar 

  8. Bouzier-Sore AK, Bolanos JP (2015) Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front Aging Neurosci 7:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Halestrap AP (2013) Monocarboxylic acid transport. Compr Physiol 3:1611–1643

    Article  PubMed  Google Scholar 

  10. Sotelo-Hitschfeld T, Niemeyer MI, Machler P, Ruminot I, Lerchundi R, Wyss MT, Stobart J, Fernandez-Moncada I, Valdebenito R, Garrido-Gerter P, Contreras-Baeza Y, Schneider BL, Aebischer P, Lengacher S, San MA, Le DJ, Bonvento G, Magistretti PJ, Sepulveda FV, Weber B, Barros LF (2015) Channel-mediated lactate release by k+-stimulated astrocytes. J Neurosci 35:4168–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV (2016) Hemichannel-mediated release of lactate. J Cereb Blood Flow Metab 36:1202–1211

    Article  CAS  PubMed  Google Scholar 

  12. Cori CF, Cori GT (1929) Glycogen formation in the liver from d- and l-lactic acid. J Biol Chem 81:389–403

    CAS  Google Scholar 

  13. Brooks GA (1985) Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals. In: Gilles R (ed) Circulation, respiration, and metabolism: current comparative approaches. Springer-Verlag, Berlin, pp 208–218

    Chapter  Google Scholar 

  14. Tsacopoulos M, Evequoz-Mercier V, Perrottet P, Buchner E (1988) Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate. Proc Natl Acad Sci USA 85:8727–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249

    Article  CAS  PubMed  Google Scholar 

  17. Barros LF, Weber B (2018) CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J Physiol 596:347–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27:757–785

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728

    Article  CAS  PubMed  Google Scholar 

  20. Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148–163

    Article  CAS  Google Scholar 

  21. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 38:119–133

    CAS  PubMed  Google Scholar 

  23. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang GJ, White E, Rabinowitz JD (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barros LF, Ruminot I, San Martín A, Lerchundi R, Fernández-Moncada I, Baeza-Lehnert F (2020) Aerobic glycolysis in the brain: Warburg and Crabtree contra Pasteur. Neurochem Res. https://doi.org/10.1007/s11064-020-02964-w

    Article  PubMed  Google Scholar 

  26. Schurr A (2014) Cerebral glycolysis: a century of persistent misunderstanding and misconception. Front Neurosci 8:360

    Article  PubMed  PubMed Central  Google Scholar 

  27. Baker JS, McCormick MC, Robergs RA (2010) Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab 2010:905612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  CAS  PubMed  Google Scholar 

  29. Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15:485–491

    Article  CAS  PubMed  Google Scholar 

  30. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    Article  CAS  PubMed  Google Scholar 

  32. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mondragao MA, Schmidt H, Kleinhans C, Langer J, Kafitz KW, Rose CR (2016) Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons. J Physiol 19:5507–5527

    Article  CAS  Google Scholar 

  34. Baeza-Lehnert F, Saab AS, Gutierrez R, Larenas V, Diaz E, Horn M, Vargas M, Hosli L, Stobart J, Hirrlinger J, Weber B, Barros LF (2019) Non-canonical control of neuronal energy status by the Na(+) pump. Cell Metab 29:668–680

    Article  CAS  PubMed  Google Scholar 

  35. Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G (2017) Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab 26:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saez I, Duran J, Sinadinos C, Beltran A, Yanes O, Tevy MF, Martinez-Pons C, Milan M, Guinovart JJ (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brekke EM, Walls AB, Schousboe A, Waagepetersen HS, Sonnewald U (2012) Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J Cereb Blood Flow Metab 32:1788–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  39. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  CAS  PubMed  Google Scholar 

  40. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    Article  CAS  PubMed  Google Scholar 

  41. Bak LK, Walls AB (2018) Lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J Physiol 596:351–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949–1045

    Article  CAS  PubMed  Google Scholar 

  43. Oe Y, Baba O, Ashida H, Nakamura KC, Hirase H (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64:1532–1545

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  45. Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    Article  CAS  PubMed  Google Scholar 

  46. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-Hitschfeld T, Moldenhauer H, San Martín A, Gutiérrez R, Zambrano M, Barros LF (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruminot I, Gutiérrez R, Peña-Munzenmeyer G, Añazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruminot I, Schmalzle J, Leyton B, Barros LF, Deitmer JW (2017) Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue. J Cereb Blood Flow Metab 39:513–523

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sotelo-Hitschfeld T, Fernández-Moncada I, Barros LF (2012) Acute feedback control of astrocytic glycolysis by lactate. Glia 60:674–680

    Article  CAS  PubMed  Google Scholar 

  51. Kohler S, Winkler U, Sicker M, Hirrlinger J (2018) NBCe1 mediates the regulation of the NADH/NAD(+) redox state in cortical astrocytes by neuronal signals. Glia 66:2233–2245

    Article  PubMed  Google Scholar 

  52. Fernandez-Moncada I, Ruminot I, Robles-Maldonado D, Alegria K, Deitmer JW, Barros LF (2018) Neuronal control of astrocytic respiration through a variant of the Crabtree effect. Proc Natl Acad Sci USA 115:1623–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. San Martín A, Arce-Molina R, Galaz A, Perez-Guerra G, Barros LF (2017) Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J Biol Chem 292:9432–9438

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lerchundi R, Fernandez-Moncada I, Contreras-Baeza Y, Sotelo-Hitschfeld T, Machler P, Wyss MT, Stobart J, Baeza-Lehnert F, Alegria K, Weber B, Barros LF (2015) NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proc Natl Acad Sci USA 112:11090–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN (2018) Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 66:477–491

    Article  PubMed  Google Scholar 

  56. Maughan DW, Henkin JA, Vigoreaux JO (2005) Concentrations of glycolytic enzymes and other cytosolic proteins in the diffusible fraction of a vertebrate muscle proteome. Mol Cell Proteomics 4:1541–1549

    Article  CAS  PubMed  Google Scholar 

  57. Wisniewski JR, Gizak A, Rakus D (2015) Integrating Proteomics and enzyme kinetics reveals tissue-specific types of the glycolytic and gluconeogenic pathways. J Proteome Res 14:3263–3273

    Article  CAS  PubMed  Google Scholar 

  58. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O'Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jackson JG, O'Donnell JC, Krizman E, Robinson MB (2015) Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. J Neurosci Res 93:999–1008

    Article  CAS  PubMed  Google Scholar 

  60. Sweetlove LJ, Fernie AR (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 9:2136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, Roach NP, Moresco JJ, Karnovsky A, Baba M, Yates JR III, Gitler AD, Inoki K, Klionsky DJ, Kim JK (2017) Glycolytic enzymes coalesce in G bodies under hypoxic stress. Cell Rep 20:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jang S, Nelson JC, Bend EG, Rodriguez-Laureano L, Tueros FG, Cartagenova L, Underwood K, Jorgensen EM, Colon-Ramos DA (2016) Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90:278–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ureta T (1985) The organization of metabolism: subcellular localization of glycolytic enzymes. Arch Biol Med Exp (Santiago) 18:9–31

    CAS  Google Scholar 

  64. Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M (2016) Substrate channelling as an approach to cascade reactions. Nat Chem 8:299–309

    Article  CAS  PubMed  Google Scholar 

  65. Barros LF, Martinez C (2007) An enquiry into metabolite domains. Biophys J 92:3878–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinez C, Kalise D, Barros LF (2010) General requirement for harvesting antennae at Ca2+ and H+ channels and transporters. Front Neuroenerg 2:27

    CAS  Google Scholar 

  67. Kreft M, Luksic M, Zorec TM, Prebil M, Zorec R (2013) Diffusion of D-glucose measured in the cytosol of a single astrocyte. Cell Mol Life Sci 70:1483–1492

    Article  CAS  PubMed  Google Scholar 

  68. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B, Jahn HM, Huang W, Steffens H, Schomburg ED, Perez-Samartin A, Perez-Cerda F, Bakhtiari D, Matute C, Lowel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave KA (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ashrafi G, Wu Z, Farrell RJ, Ryan TA (2017) GLUT4 mobilization supports energetic demands of active synapses. Neuron 93:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, Cohn W, Rajendran PS, Vondriska TM, Whitelegge JP, Coppola G, Khakh BS (2017) Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95:531–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferreira JM, Burnett AL, Rameau GA (2011) Activity-dependent regulation of surface glucose transporter-3. J Neurosci 31:1991–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057

    Article  CAS  PubMed  Google Scholar 

  74. Drewes LR, Gilboe DD (1973) Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. J Biol Chem 248:2489–2496

    CAS  PubMed  Google Scholar 

  75. Fernandez-Moncada I, Barros LF (2014) Non-preferential fuelling of the Na+/K+ ATPase pump. Biochem J 460:353–361

    Article  CAS  PubMed  Google Scholar 

  76. Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na(+)-Ca(2+) cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68

    Article  PubMed  Google Scholar 

  77. DeBerardinis BK, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquiere B, Cauwenberghs S, Eelen G, Phng LK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, DeBerardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663

    Article  PubMed  CAS  Google Scholar 

  78. Boradia VM, Raje M, Raje CI (2014) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem Soc Trans 42:1796–1801

    Article  CAS  PubMed  Google Scholar 

  79. Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323

    Article  CAS  PubMed  Google Scholar 

  80. Zala D, Hinckelmann MV, Yu H, Lyra da Cunha MM, Liot G, Cordelieres FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all past and present members of the Barros Lab for their contributions and discussions. We also thank Karen Everett for critical reading of the manuscript. This work was partially funded by CONICYT-BMBF grant 180045. The Centro de Estudios Científicos (CECs) is funded by the Chilean Government through the Centers of Excellence Basal Financing Program of CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Felipe Barros.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Professor Michael Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, L.F., San Martín, A., Ruminot, I. et al. Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 45, 1328–1334 (2020). https://doi.org/10.1007/s11064-020-03005-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03005-2

Keywords

Navigation