Skip to main content

Advertisement

Log in

Astrocyte-Derived Exosomal microRNA miR-200a-3p Prevents MPP+-Induced Apoptotic Cell Death Through Down-Regulation of MKK4

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes release exosomes that regulate neuronal cell function. 1-methyl-4-phenylpyridinium (MPP+) is a well-known neurotoxin used to induce cell death in in vitro Parkinson’s disease models, and microRNA (miRNA) transferred by released exosomes can regulate its mechanisms. Here, we demonstrated that exosomes released from normal astrocytes (ADEXs), but not exosomes derived from MPP+-stimulated astrocytes (MPP+-ADEXs), significantly attenuate MPP+-induced cell death in SH-SY5Y cells and primary mesencephalic dopaminergic neuron cultures, and reduce expression of mitogen-activated protein kinase kinase 4 (MKK4), an important upstream kinase in the c-Jun N-terminal kinase cell death pathway. Similar neuroprotective results were obtained from primary hippocampal neuron cultures, an in vitro glutamate excitotoxicity model. Through small-RNA sequencing of exosomal miRNA, we identified miR-200a-3p as the most down-regulated miRNA expressed in MPP+-ADEXs. miRNA target analysis and reporter assay confirmed that miR-200a-3p targets MKK4 through binding to two independent sites on the 3′-UTR of Map2k4/MKK4 mRNA. Treatment with miR-200a-3p mimic suppressed both MKK4 mRNA and protein expressions, and attenuated cell death in MPP+-treated SH-SY5Y cells and glutamate-treated hippocampal neuron cultures. Our results suggest that normal astrocytes release miR-200a-3p which exhibits a neuroprotective effect through down-regulation of MKK4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  2. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257. https://doi.org/10.15252/embj.201592705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hajj GN, Arantes CP, Dias MV, Roffé M, Costa-Silva B, Lopes MH, Porto-Carreiro I, Rabachini T, Lima FR, Beraldo FH, Prado MA, Linden R, Martins VR (2013) The unconventional secretion of stress-inducible protein 1 by a heterogeneous population of extracellular vesicles. Cell Mol Life Sci 70:3211–3227. https://doi.org/10.1007/s00018-013-1328-y

    Article  CAS  PubMed  Google Scholar 

  4. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182. https://doi.org/10.3389/fncel.2013.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R (2017) Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int 2017:1719050. https://doi.org/10.1155/2017/1719050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jovičić A, Gitler AD (2017) Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes. PLoS ONE 12:e0171418. https://doi.org/10.1371/journal.pone.0171418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, Ye R, Liu X (2019) Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res 1717:66–73. https://doi.org/10.1016/j.brainres.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Hu G, Yao H, Chaudhuri AD, Duan M, Yelamanchili SV, Wen H, Cheney PD, Fox HS, Buch S (2012) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381. https://doi.org/10.1038/cddis.2012.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M (2017) Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends Pharmacol Sci 38:541–555. https://doi.org/10.1016/j.tips.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  10. Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:278. https://doi.org/10.3389/fncel.2015.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:478–500. https://doi.org/10.1007/s10495-008-0309-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dhanasekaran DN, Reddy EP (2017) JNK signaling: a multiplexing hub in programmed cell death. Genes Cancer 8:682–694. https://doi.org/10.18632/genesandcancer.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH2-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75:1200–1208. https://doi.org/10.1046/j.1471-4159.2000.0751200.x

    Article  CAS  PubMed  Google Scholar 

  14. Ogura M, Kikuchi H, Shakespear N, Suzuki T, Yamaki J, Homma MK, Oshima Y, Homma Y (2019) Prenylated quinolinecarboxylic acid derivative prevents neuronal cell death through inhibition of MKK4. Biochem Pharmacol 162:109–122. https://doi.org/10.1016/j.bcp.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Ogura M, Nakamichi N, Takano K, Oikawa H, Kambe Y, Ohno Y, Taniura H, Yoneda Y (2006) Functional expression of A glutamine transporter responsive to down-regulation by lipopolysaccharide through reduced promoter activity in cultured rat neocortical astrocytes. J Neurosci Res 83:1447–1460. https://doi.org/10.1002/jnr.20855

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Wrathall JR, Schachner M (2010) Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes. Glia 58:315–328. https://doi.org/10.1002/glia.20925

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fukuhara Y, Takeshima T, Kashiwaya Y, Shimoda K, Ishitani R, Nakashima K (2001) GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+ -induced apoptosis. Neuroreport 12:2049–2052. https://doi.org/10.1097/00001756-200107030-00051

    Article  CAS  PubMed  Google Scholar 

  18. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980. https://doi.org/10.1126/science.6823561

    Article  CAS  PubMed  Google Scholar 

  19. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177. https://doi.org/10.1073/pnas.82.7.2173

    Article  CAS  PubMed  Google Scholar 

  20. Fall CP, Bennett JP Jr. (1999) Characterization and time course of MPP+-induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res 55:620–628

    Article  CAS  Google Scholar 

  21. Xia L, Guo D, Chen B (2017) Neuroprotective effects of astragaloside IV on Parkinson disease models of mice and primary astrocytes. Exp Ther Med 14:5569–5575. https://doi.org/10.3892/etm.2017.5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben HL, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Ruiz M, Petit F, Houitte D, Faivre E, Vandesquille M, Aron-Badin R, Dhenain M, Déglon N, Hantraye P, Brouillet E, Bonvento G, Escartin C (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J Neurosci 35:2817–2829. https://doi.org/10.1523/JNEUROSCI.3516-14.2015

    Article  Google Scholar 

  23. Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben HL, Escartin C (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK-STAT3 pathway? Neuroscience 330:205–218. https://doi.org/10.1016/j.neuroscience.2016.05.043

    Article  CAS  PubMed  Google Scholar 

  24. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166. https://doi.org/10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  25. Avey D, Sankararaman S, Yim AKY, Barve R, Milbrandt J, Mitra RD (2018) Single-cell RNA-seq uncovers a robust transcriptional response to morphine by glia. Cell Rep 24:3619–3629. https://doi.org/10.1016/j.celrep.2018.08.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466. https://doi.org/10.1093/nar/gkv403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed Central  Google Scholar 

  28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The Gene Ontology Consortium (2019) The gene ontology resource: 20 years and still going strong. Nucleic Acids Res 47:D330–D338. https://doi.org/10.1093/nar/gky1055

    Article  CAS  Google Scholar 

  30. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188. https://doi.org/10.1016/j.pneurobio.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  31. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  32. Gosselin RD, Meylan P, Decosterd I (2013) Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front Cell Neurosci 7:251. https://doi.org/10.3389/fncel.2013.00251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhuri AD, Dastgheyb RM, Yoo SW, Trout A, Talbot CC Jr, Hao H, Witwer KW, Haughey NJ (2018) TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis 9:363. https://doi.org/10.1038/s41419-018-0369-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr, Preul MC, Theodore N (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 3:56. https://doi.org/10.3389/fsurg.2016.00056

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, Tan L (2014) Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep 4:4734. https://doi.org/10.1038/srep04734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gagliardi D, Comi GP, Bresolin N, Corti S (2019) microRNAs as regulators of cell death mechanisms in amyotrophic lateral sclerosis. J Cell Mol Med 23:1647–1656. https://doi.org/10.1111/jcmm.13976

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu S, Wang X, He X, Wang Y, Gao S, Ren L, Shi Y (2016) Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones 21:697–705. https://doi.org/10.1007/s12192-016-0695-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Varcianna A, Myszczynska MA, Castelli LM, O’Neill B, Kim Y, Talbot J, Nyberg S, Nyamali I, Heath PR, Stopford MJ, Hautbergue GM, Ferraiuolo L (2019) micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 40:626–635. https://doi.org/10.1016/j.ebiom.2018.11.067

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao S, Mao L, Wang SG, Chen FL, Ji F, Fei HD (2017) microRNA-200a activates Nrf2 signaling to protect osteoblasts from dexamethasone. Oncotarget 8:104867–104876. https://doi.org/10.18632/oncotarget.20452

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Liu J, Wang Q, Jiang H, Zeng L, Li Z, Liu R (2019) microRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and Tau hyperphosphorylation via coregulating BACE1 and PRKACB. Front Pharmacol 10:806. https://doi.org/10.3389/fphar.2019.00806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, Pan T, Zhang Y, Cao X, Wang Q (2013) microRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem 288:7956–7967. https://doi.org/10.1074/jbc.M112.445429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Liu X, Fang J, Li H, Chen J (2015) microRNA-363 plays a tumor suppressive role in osteosarcoma by directly targeting MAP2K4. Int J Clin Exp Med 8:20157–20167

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan W, Wang H, Jianwei R, Ye Z (2014) microRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells. Cell Physiol Biochem 33:402–412. https://doi.org/10.1159/000356679

    Article  CAS  PubMed  Google Scholar 

  44. Ding L, Yu LL, Han N, Zhang BT (2017) MiR-141 promotes colon cancer cell proliferation by inhibiting MAP2K4. Oncol Lett 13:1665–1671. https://doi.org/10.3892/ol.2017.5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW (2014) Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci 105:1384–1392. https://doi.org/10.1111/cas.12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428:688–692. https://doi.org/10.1016/j.jmb.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  47. Ahn YH, Kurie JM (2009) MKK4/SEK1 is negatively regulated through a feedback loop involving the E3 ubiquitin ligase itch. J Biol Chem 284:29399–29404. https://doi.org/10.1074/jbc.M109.044958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research) and Fukushima Medical University (Grant for Project Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Homma.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakespear, N., Ogura, M., Yamaki, J. et al. Astrocyte-Derived Exosomal microRNA miR-200a-3p Prevents MPP+-Induced Apoptotic Cell Death Through Down-Regulation of MKK4. Neurochem Res 45, 1020–1033 (2020). https://doi.org/10.1007/s11064-020-02977-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02977-5

Keywords

Navigation