Skip to main content
Log in

Experimental Characterization of the Chronic Constriction Injury-Induced Neuropathic Pain Model in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Austin PJ, Wu A, Moalem-Taylor G (2012) Chronic constriction of the sciatic nerve and pain hypersensitivity testing in rats. J Vis Exp JoVE 61:3393

    Google Scholar 

  2. Starowicz K, Przewlocka B (2012) Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. Philos Trans R Soc B 367:3286–3299

    Article  CAS  Google Scholar 

  3. Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta 1802:924–933

    Article  CAS  PubMed  Google Scholar 

  4. George A, Kleinschnitz C, Zelenka M, Brinkhoff J, Stoll G, Sommer C (2004) Wallerian degeneration after crush or chronic constriction injury of rodent sciatic nerve is associated with a depletion of endoneurial interleukin-10 protein. Exp Neurol 188:187–191

    Article  CAS  PubMed  Google Scholar 

  5. Hu P, Bembrick AL, Keay KA, McLachlan EM (2007) Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 21:599–616

    Article  CAS  PubMed  Google Scholar 

  6. Whiteside GT, Adedoyin A, Leventhal L (2008) Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology 54:767–775

    Article  CAS  PubMed  Google Scholar 

  7. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  8. Ma W, Eisenach JC (2003) Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res 970:110–118

    Article  CAS  PubMed  Google Scholar 

  9. Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G (2006) T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol 200:480–485

    Article  CAS  PubMed  Google Scholar 

  10. Lindenlaub T, Teuteberg P, Hartung T, Sommer C (2000) Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res 866:15–22

    Article  CAS  PubMed  Google Scholar 

  11. Ramer MS, Kawaja MD, Henderson JT, Roder JC, Bisby MA (1998) Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neurosci Lett 251:53–56

    Article  CAS  PubMed  Google Scholar 

  12. Uçeyler N, Tscharke A, Sommer C (2007) Early cytokine expression in mouse sciatic nerve afterchronic constriction nerve injury depends on calpain. Brain Behav Immun 21:553–560

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Xiao-Feng S, Jin-Hua B, Xiso-Jie L, Liu-Ping W, Zheng-Liang M, Xiao-Ping G (2013) Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav 111:64–70

    Article  CAS  PubMed  Google Scholar 

  14. Shimoyama M, Tanaka K, Hasua F, Shimoyama N (2002) A mouse model of neuropathic cancer pain. Pain 99:167–174

    Article  PubMed  Google Scholar 

  15. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, Ali DI, Sulaiman MR (2013) Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain: participation of the κ-opioid receptor and KATP. Pharmacol Biochem Behav 114–115:58–63

    Article  CAS  PubMed  Google Scholar 

  16. Zulazmi NA, Gopalsamy B, Farouk AAO, Sulaiman MR, Bharatham BH, Perimal EK (2015) Antiallodynic and antihyperalgesic effects of zerumbone on a mouse model of chronic constriction injury-induced neuropathic pain. Fitoterapia 105:215–221

    Article  CAS  PubMed  Google Scholar 

  17. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK (2016) Zerumbone alleviates chronic constriction injury-induced allodynia and hyperalgesia through serotonin 5-HT receptors. Biomed Pharmacother 83:1303–1310

    Article  CAS  PubMed  Google Scholar 

  18. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  CAS  PubMed  Google Scholar 

  20. Hunt SP, Pini A, Eva G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 32:632–634

    Article  Google Scholar 

  21. Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83

    Article  CAS  PubMed  Google Scholar 

  22. Gao YJ, Ji RR (2009) c-Fos or pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vadakkan KI, Jia YH, Zhuo M (2005) A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain 6:747–756

    Article  PubMed  Google Scholar 

  24. Nadal X, Baños JE, Kieffer BL, Maldonado R (2006) Neuropathic pain is enhanced in δ-opioid receptor knockout mice. Eur J Neurosci 23:830–834

    Article  PubMed  Google Scholar 

  25. Randall LO, Selitto JJ (1957) cA method for measurement of analgesic activity on inflamed tissue. Arch Int Pharm Ther 111:409–419

    CAS  Google Scholar 

  26. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

  27. Liang C, Tao Y, Shen C, Tan Z, Xiong WC, Mei L (2012) Erbin is required for myelination in regenerated axonsafter injury. J Neurosci 32:15169–15180

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  29. van der Wal S, Cornelissen L, Behet M, Vanekar M, Steegers M, Vissers K (2015) Behavior of neuropathic pain in mice following chronic constriction injury comparing silk and catgut ligatures. SpringerPlus 4(1):225

    Article  PubMed  PubMed Central  Google Scholar 

  30. Robinson I, Meert TF (2005) Stability of neuropathic pain symptoms in partial sciatic nerve ligation in rats is affected by suture material. Neurosci Lett 373:125–129

    Article  CAS  PubMed  Google Scholar 

  31. Vissers K, De Jongh R, Hoffmann V, Heylen R, Crul B, Meert T (2003) Internal and external factors affecting the development of neuropathic pain in rodents. Is it all about pain? Pain Pract 3:326–342

    Article  CAS  PubMed  Google Scholar 

  32. Clatworthy AL, Illich PA, Castro GA, Walters ET (1995) Role of peri-axonal inflammation in the development of thermal hyperalgesia and guarding behaviour in a rat model of neuropathic pain. Neurosci Lett 184:5–8

    Article  CAS  PubMed  Google Scholar 

  33. Olsson Y, Kristensson K (1973) The perineurium as a diffusion barrier to protein tracers following trauma to nerves. Acta Neuropathol 23:105–111

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  CAS  PubMed  Google Scholar 

  35. Maves TJ, Pechman PS, Gebhart GF, Meller ST (1993) Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 54:57–69

    Article  CAS  PubMed  Google Scholar 

  36. Grace PM, Hutchinson MR, Manavis J, Somogyi AA, Rolan PE (2010) A novel animal model of graded neuropathic pain: utility to investigate mechanisms of population heterogeneity. J Neurosci Methods 193:47–53

    Article  PubMed  Google Scholar 

  37. Kajander KC, Pollock CH, Berg H (1996) Evaluation of hindpaw position in rats during chronic constriction injury (CCI) produced with different suture materials. Somatosens Mot Res 13:95–101

    Article  CAS  PubMed  Google Scholar 

  38. Yamashita T, Sakuma Y, Kato Y, Kotani J (2004) Effect of different suture materials on the chronic constriction injury model. J Osaka Dent Univ 38:89–94

    Google Scholar 

  39. Postlethwait R (1970) Long-term comparative study of nonabsorbable sutures. Ann Surg 171:892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jaggi AS, Singh N (2011) Exploring the potential of telmisartan in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 667:215–221

    Article  CAS  PubMed  Google Scholar 

  41. Starowicz K, Mousa SA, Obara I, Chocyk A, Przewlocki R, Wedzony K, Machelska H, Przewlocka B (2009) Peripheral antinociceptive effects of MC4 receptor antagonists in rat model of neuropathic pain—a biochemical and behavioural study. Pharmacol Rep 61:1086–1095

    Article  CAS  PubMed  Google Scholar 

  42. Coleman MP, Freeman MR (2010) Wallerian degeneration.Wld(S), and Nmnat. Annu Rev Neurosci 1802:245–267

    Article  CAS  Google Scholar 

  43. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gupta R, Nassiri N, Hazel A, Bathen M, Tahseen M (2012) Chronic nerve compression alters Schwann cell myelin architecture in a murine model. Muscle Nerve 45:231–241

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BioMed Central Neurosci 6:6

    Google Scholar 

  46. Neely JG, Hough JV (1988) Histologic findings in two very small intracanalicular solitary schwannomas of the eight nerve: II. “Onion bulbs”. Am J Otolaryngol 9:216–221

    CAS  Google Scholar 

  47. Low PA (1977) The evolution of “onion bulbs” in the hereditary hypertrophic neuropathy of the Trembler mouse. Neuropathol Appl Neurobiol 3:81–92

    Article  Google Scholar 

  48. Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56:1518–1531

    Article  PubMed  Google Scholar 

  49. Cross SA (1994) Pathophysiology of Pain. Mayo Clin Proc 69:375–383

    Article  CAS  PubMed  Google Scholar 

  50. Vogt BA, Sikes RW, Vogt LJ (1993) Anterior cingulate cortex and the medial pain system. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalalmus. Birkhauser, Boston, pp 313–344

    Chapter  Google Scholar 

  51. Bernard JF, Besson JM (1990) The spino(trigemio)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63:473–490

    Article  CAS  PubMed  Google Scholar 

  52. Soleimannejad E, Semnanian S, Fathollahi Y, Naghdi N (2006) Microinjection of ritanserin into the dorsal hippocampal CA1 and gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res 168:221–225

    Article  CAS  PubMed  Google Scholar 

  53. Duric V, McCarson KE (2005) Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neurosci Lett 133:999–1006

    Article  CAS  Google Scholar 

  54. Narita M, Ozaki S, Narita M, Ise Y, Yajima Y, Suzuki T (2003) Change in the expression of c-fos in the rat brain following sciatic nerve ligation. Neurosci Lett 352:231–233

    Article  CAS  PubMed  Google Scholar 

  55. Takeda R, Watanabe Y, Ikeda T, Abe H, Ebihara K, Matsuo H, Nonaka H, Hashiguchi H, Nishimori T, Ishida Y (2009) Analgesic effect of milnacipran is associated with c-Fos expression in the anterior cingulate cortex in the rat neuropathic pain model. Neurosci Res 64:380–384

    Article  CAS  PubMed  Google Scholar 

  56. Min JH, Park CM, Moon DE, Kim SN, Chung CW, Kim KH (2001) Fos expression in the brain of neuropathic pain rats. Korean J Anesthesiol 41:229–238

    Article  Google Scholar 

  57. Leita-Almeida H, Guimarães MR, Cerqueira JJ, Ribeiro-Costa N, Martins HA, Sousa N, Almeida A (2014) Asymmetric c-fos expression in the ventral orbital cortex is associated with impaired reversal learning in a right-sided neuropathy. Mol Pain 10:41

    Google Scholar 

  58. Sapolsky RM (2003) Stress and Plasticity in the Limbic System. Neurochem Res 28:1735–1742

    Article  CAS  PubMed  Google Scholar 

  59. Krugers HJ, Lucassen PJ, Henk Karst H, Joëls M (2010) Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front Synaptic Neurosci 2:1–10

    Google Scholar 

  60. Kodama D, Ono H, Tanabe M (2007) Altered hippocampal long-term potentiation after peripheral nerve injury in mice. J Pharmacol 574:127–132

    CAS  Google Scholar 

  61. Tao T, Wei MY, Guo XW, Zhang J, Yang LY, Zheng H (2019) Modulating cAMP responsive element binding protein 1 attenuates functional and behavioural deficits in rat model of neuropathic pain. Eur Rev Med Pharmacol Sci 23:2602–2611

    CAS  PubMed  Google Scholar 

  62. Yu-Chuan T, Edmund S, Hsing-Hong C, Li-Kai W, Chi-Hsien C (2002) Effect of intrathecal octreotide on thermal hyperalgesia and evoked spinal c-Fos expression in rats with sciatic constriction injury. Pain 99:407–413

    Article  Google Scholar 

  63. Maeda Y, Ikeuchia M, Wacnik Kathleen A, Sluka KA (2009) Increased c-fos immunoreactivity in the spinal cord and brain following spinal cord stimulation is frequency-dependent. Brain Res 1259:40–50

    Article  CAS  PubMed  Google Scholar 

  64. Cross SA (1994) Pathophysiology of pain. Mayo Clin Proc 69:375–383

    Article  CAS  PubMed  Google Scholar 

  65. Gong K, Kung LH, Magni G, Bhargava A, Jasmin L (2014) Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PLoS ONE 9(4):e95491. https://doi.org/10.1371/journal.pone.0095491

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bardoni R (2013) Role of presynaptic glutamate receptors in pain transmission at the spinal cord level. Curr Neuropharmacol 11(5):477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Osikowicz M, Mika J, Przewlocka B (2013) The glutamatergic system as a target for neuropathic pain relief. Exp Physiol 98(2):372–384

    Article  CAS  PubMed  Google Scholar 

  68. Lee HL, Lee KM, Son SJ, Hwang SH, Cho HJ (2004) Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. NeuroReport 15:2807–2811

    CAS  PubMed  Google Scholar 

  69. Gopalsamy B, Farouk AAO, Sulaiman MR, Mohamad TAST, Perimal EK (2017) Antiallodynic and antihyperalgesic activities of zerumbone via the suppression of IL-1β, IL-6, and TNF-α in a mouse model of neuropathic pain. J Pain Res 10:2605–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dubovy P, Jancalek R, Klusakova I, Svizenska I, Pejchalova K (2006) Intra- and extraneuronal changes of immunofluorescence staining for TNF-alpha and TNFR1 in the dorsal root ganglia of rat peripheral neuropathic pain models. Cell Mol Neurobiol 26:1205–1217

    Article  CAS  PubMed  Google Scholar 

  71. Taylor AM, Mehrabani S, Liu S, Taylor AJ, Cahill CM (2017) Topography of microglial activation in sensory-and affect-related brain regions in chronic pain. J Neurosci Res 95:1330–1335

    Article  CAS  PubMed  Google Scholar 

  72. Barcelon EE, Cho W, Jun SB, Lee SJ (2019) Brain microglial activation in chronic pain-associated affective disorder. Front Neurosci 13:213

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ledeboer A, Brevé JJ, Poole S, Tilders FJ, Vandam AM (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30(2):134–142

    Article  CAS  PubMed  Google Scholar 

  74. Giardini AC, dos Santos FM, da Silva JT, de Oliveira ME, Martins DO, Chacur M (2017) Neural mobilization treatment decreases glial cells and brain-derived neurotrophic factor expression in the central nervous system in rats with neuropathic pain induced by CCI in rats. Pain Res Manag. https://doi.org/10.1155/2017/7429761

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bian J, Zhang Y, Liu Y, Li Q, Tang H-B, Liu Q (2019) P2Y6 receptor-mediated spinal microglial activation in neuropathic pain. Pain Res Manag. https://doi.org/10.1155/2019/2612534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Universiti Putra Malaysia under the Ministry of Science, Technology & Innovation, Science Fund Scheme (Grant 5450778) and is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Kumar Perimal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to declare.

Ethical Approval

All procedures performed in this study involving animals were in accordance with the ethical standards of Institutional Animal Care and Use Committee (IACUC) of Universiti Putra Malaysia, at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalsamy, B., Sambasevam, Y., Zulazmi, N.A. et al. Experimental Characterization of the Chronic Constriction Injury-Induced Neuropathic Pain Model in Mice. Neurochem Res 44, 2123–2138 (2019). https://doi.org/10.1007/s11064-019-02850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02850-0

Keywords

Navigation