Skip to main content

Advertisement

Log in

Phosphoglycerate Mutase 1 Promotes Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus by Facilitating the Phosphorylation of cAMP Response Element-Binding Protein

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In a previous study, we observed a significant increase in phosphoglycerate mutase 1 (PGAM1) levels after pyridoxine treatment. In the present study, we investigated the effects of PGAM1 on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. We generated a Tat-PGAM1 fusion protein to cross the blood–brain barrier and neuronal plasma membrane. We administered the Tat peptide, control-PGAM1, or Tat-PGAM1 fusion protein to 8-week-old mice once a day for 3 weeks and tested novel object recognition memory. The mice were then euthanized to conduct western blot analysis for polyhistidine expression and immunohistochemical analysis for Ki67, doublecortin, and phosphorylated cAMP response element-binding protein. Mice treated with Tat peptide showed similar exploration times for familiar and new objects and the discrimination index was significantly lower in this group than in the control group. Tat-PGAM1 moderately increased the exploration time of new objects when compared to familiar objects, while the discrimination index was significantly higher in the Tat-PGAM1-treated group, but not in the control-PGAM1-treated group, when compared with the control group. Higher PGAM1 protein expression was observed in the hippocampus of Tat-PGAM1-treated mice when compared with the hippocampi of control, Tat peptide-, and control-PGAM1-treated mice, using western blot analysis. In addition, the numbers of proliferating cells and differentiated neuroblasts were significantly lower in the Tat peptide-treated group than in the control group. In contrast, the numbers of proliferating cells and differentiated neuroblasts in the dentate gyrus were higher in the Tat-PGAM1-treated group than in the control group. Administration of Tat-PGAM1 significantly facilitated the phosphorylation of cAMP response element-binding protein in the dentate gyrus. Administration of control-PGAM1 did not show any significant effects on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. These results suggest that PGAM1 plays a role in cell proliferation and neuroblast differentiation in the dentate gyrus via the phosphorylation of cAMP response element-binding protein in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets and supporting materials generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kempermann G, Gage FH (1999) New nerve cells for the adult brain. Sci Am 280:48–53

    Article  CAS  PubMed  Google Scholar 

  2. Drew LJ, Fusi S, Hen R (2013) Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus? Learn Mem 20:710–729

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    Article  CAS  PubMed  Google Scholar 

  4. Dupret D, Revest JM, Koehl M et al (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE 3:e1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rikani AA, Choudhry Z, Choudhry AM, Zenonos G, Tariq S, Mobassarah NJ (2013) Spatially regulated adult neurogenesis. Ann Neurosci 20:67–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fothergill-Gilmore LA, Watson HC (1989) The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol 62:227–313

    CAS  PubMed  Google Scholar 

  8. Usuba T, Ishibashi Y, Okawa Y, Hirakawa T, Takada K, Ohkawa K (2001) Purification and identification of monoubiquitin-phosphoglycerate mutase B complex from human colorectal cancer tissues. Int J Cancer 94:662–668

    Article  CAS  PubMed  Google Scholar 

  9. Li C, Xiao Z, Chen Z et al (2006) Proteome analysis of human lung squamous carcinoma. Proteomics 6:547–558

    Article  CAS  PubMed  Google Scholar 

  10. Durany N, Joseph J, Jimenez OM et al (2000) Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase, creatine kinase and enolase activity and isoenzymes in breast carcinoma. Br J Cancer 82:20–27

    Article  CAS  PubMed  Google Scholar 

  11. Fang MZ, Liu C, Song Y et al (2004) Over-expression of gastrin-releasing peptide in human esophageal squamous cell carcinomas. Carcinogenesis 25:865–871

    Article  CAS  PubMed  Google Scholar 

  12. Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M (2006) Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis 27:1417–1423

    Article  CAS  PubMed  Google Scholar 

  13. Gao H, Yu B, Yan Y et al (2013) Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J Neurosurg 118:846–853

    Article  CAS  PubMed  Google Scholar 

  14. Jain R, Kulkarni P, Dhali S, Rapole S, Srivastava S (2015) Quantitative proteomic analysis of global effect of LLL12 on U87 cell’s proteome: an insight into the molecular mechanism of LLL12. J Proteomics 113:127–142

    Article  CAS  PubMed  Google Scholar 

  15. Xu Z, Gong J, Wang C et al (2016) The diagnostic value and functional roles of phosphoglycerate mutase 1 in glioma. Oncol Rep 36:2236–2244

    Article  CAS  PubMed  Google Scholar 

  16. Liu ZG, Ding J, Du C et al (2018) Phosphoglycerate mutase 1 is highly expressed in C6 glioma cells and human astrocytoma. Oncol Lett 15:8935–8940

    PubMed  PubMed Central  Google Scholar 

  17. Ren F, Wu H, Lei Y et al (2010) Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer 9:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hitosugi T, Zhou L, Elf S et al (2012) Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    Article  CAS  PubMed  Google Scholar 

  20. Jacobowitz DM, Jozwik C, Fukuda T, Pollard HB (2008) Immunohistochemical localization of Phosphoglycerate mutase in capillary endothelium of the brain and periphery. Microvasc Res 76:89–93

    Article  CAS  PubMed  Google Scholar 

  21. Imperlini E, Orrù S, Corbo C, Daniele A, Salvatore F (2014) Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model. J Neurochem 129:1002–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma NK, Sethy NK, Bhargava K (2013) Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics 79:277–298

    Article  CAS  PubMed  Google Scholar 

  23. Martins-de-Souza D, Alsaif M, Ernst A et al (2012) The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia. BMC Res Notes 5:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697

    Article  CAS  PubMed  Google Scholar 

  25. Zhang D, Jin N, Sun W et al (2017) Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene 36:2900–2909

    Article  CAS  PubMed  Google Scholar 

  26. Yoo DY, Kim W, Kim DW et al (2011) Pyridoxine enhances cell proliferation and neuroblast differentiation by upregulating the GABAergic system in the mouse dentate gyrus. Neurochem Res 36:713–721

    Article  CAS  PubMed  Google Scholar 

  27. Jung HY, Kim DW, Nam SM et al (2017) Pyridoxine improves hippocampal cognitive function via increases of serotonin turnover and tyrosine hydroxylase, and its association with CB1 cannabinoid receptor-interacting protein and the CB1 cannabinoid receptor pathway. Biochim Biophys Acta 1861:3142–3153

    Article  CAS  Google Scholar 

  28. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–672

    Article  CAS  PubMed  Google Scholar 

  30. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  PubMed  Google Scholar 

  31. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  32. Eum WS, Kim DW, Hwang IK et al (2004) In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med 37:1656–1669

    Article  CAS  PubMed  Google Scholar 

  33. Yoo DY, Kim DW, Kwon HJ et al (2017) Chronic administration of SUMO1 has negative effects on novel object recognition memory as well as cell proliferation and neuroblasts differentiation in the mouse dentate gyrus. Mol Med Rep 16:3427–3432

    Article  CAS  PubMed  Google Scholar 

  34. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwon HY, Eum WS, Jang HW et al (2000) Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1Tat protein basic domain into mammalian cells. FEBS Lett 485:163–167

    Article  CAS  PubMed  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248254

    Article  Google Scholar 

  37. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  38. Cortesi L, Barchetti A, De Matteis E et al (2009) Identification of protein clusters predictive of response to chemotherapy in breast cancer patients. J Proteome Res 8:4916–4933

    Article  CAS  PubMed  Google Scholar 

  39. Buccarello L, Borsello T (2017) The Tat-Aβ1-6A2V(D) peptide against AD synaptopathy. Oncotarget 8:10773–10774

    PubMed  PubMed Central  Google Scholar 

  40. Tu J, Zhang X, Zhu Y et al (2015) Cell-permeable peptide targeting the Nrf2-Keap1 interaction: a potential novel therapy for global cerebral ischemia. J Neurosci 35:14727–14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim SM, Hwang IK, Yoo DY et al (2015) Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model. J Cell Mol Med 19:1333–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24:275–283

    Article  PubMed  PubMed Central  Google Scholar 

  43. Irish BP, Khan ZK, Jain P et al (2009) Molecular mechanisms of neurodegenerative diseases induced by human retroviruses: a review. Am J Infect Dis 5:231–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferrell D, Giunta B (2014) The impact of HIV-1 on neurogenesis: implications for HAND. Cell Mol Life Sci 71:4387–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan Y, Gao X, Chen J, Liu Y, He JJ (2016) HIV Tat impairs neurogenesis through functioning as a Notch ligand and activation of Notch signaling pathway. J Neurosci 36:11362–11373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harricharan R, Thaver V, Russell VA, Daniels WM (2015) Tat-induced histopathological alterations mediate hippocampus-associated behavioural impairments in rats. Behav Brain Funct 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lonze BE, Riccio A, Cohen S, Ginty DD (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34:371–385

    Article  CAS  PubMed  Google Scholar 

  48. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999–1010

    Article  CAS  PubMed  Google Scholar 

  49. Segarra-Mondejar M, Casellas-Díaz S, Ramiro-Pareta M et al (2018) Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO J 37(9):e97368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoo DY, Lee KY, Park JH et al (2016) Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia. Neural Regen Res 11:1254–1259

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jung HY, Yim HS, Yoo DY et al (2016) Postnatal changes in glucose transporter 3 expression in the dentate gyrus of the C57BL/6 mouse model. Lab Anim Res 32:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yoo DY, Kim W, Yoo KY et al (2012) Effects of pyridoxine on a high-fat diet-induced reduction of cell proliferation and neuroblast differentiation depend on cyclic adenosine monophosphate response element binding protein in the mouse dentate gyrus. J Neurosci Res 90:1615–1625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Promising-Pioneering Researcher Program through Seoul National University (SNU) in 2015 and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Nos. NRF-2016R1A2B4009156 and NRF-2018R1A2B6001941). In addition, this study was partially supported by the Research Institute for Veterinary Science of Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

HYJ, HJK, WK, SMN, JWK, KRH, DYY, MHW, YSY, DWK, and IKH conceived the study. HYJ, HJK, DWK, and IKH designed the study and wrote the manuscript. HYJ, WK, JWK, and KRH conducted the animal experiments and HJK and DWK conducted biochemical experiments. SMN, DYY, MHW, and YSY participated in designing and critical discussing the study. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Dae Won Kim or In Koo Hwang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.Y., Kwon, H.J., Kim, W. et al. Phosphoglycerate Mutase 1 Promotes Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus by Facilitating the Phosphorylation of cAMP Response Element-Binding Protein. Neurochem Res 44, 323–332 (2019). https://doi.org/10.1007/s11064-018-2678-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2678-5

Keywords

Navigation