Skip to main content
Log in

Dihydrotestosterone Treatment Accelerates Autograft Reversal Sciatic Nerve Regeneration in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroactive steroids such as progesterone, testosterone, and their derivatives have been widely studied for their neuroprotective roles in the nervous system. Autologous nerve transplantation is considered as the gold standard repair technique when primary suture is impossible; nevertheless, this method is far from ideal. In this study, we aimed to explore the impact of dihydrotestosterone (DHT), a 5α-reduced derivative of testosterone, on the recovery of peripheral nerve injury treated with autologous nerve transplantation. Sprague–Dawley rats were subjected to a 10-mm right side sciatic nerve reversed autologous nerve transplantation and randomly divided into groups that received DHT or DHT + flutamide (an androgen receptor blocker) daily for 8 weeks after operation. Our results demonstrated that DHT could speed up the rate of axonal regeneration and increase the expression of myelin protein zero (P0) in autograft reversal sciatic nerves. Thus, our study provided new insights into improving the prognosis of patients with long gap peripheral nerve defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suzuki K, Tanaka H, Ebara M, Uto K, Matsuoka H, Nishimoto S, Okada K, Murase T, Yoshikawa H (2017) Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater 53:250–259

    Article  CAS  Google Scholar 

  2. Terzis JK, Sun DD, Thanos PK (1997) Historical and basic science review: past, present, and future of nerve repair. J Reconstr Microsurg 13:215–225

    Article  CAS  Google Scholar 

  3. Perretta D, Green S (2017) Bridging the gap in peripheral nerve repair. Bull Hosp Jt Dis 75(1):57–63

    Google Scholar 

  4. Yang M, Rawson JL, Zhang EW, Arnold PB, Lineaweaver W, Zhang F (2011) Comparisons of outcomes from repair of median nerve and ulnar nerve defect with nerve graft and tubulization: a meta-analysis. J Reconstr Microsurg 27:451–460

    Article  Google Scholar 

  5. Chen TY, Yang YC, Sha YN, Chou JR, Liu BS (2015) Far-infrared therapy promotes nerve repair following end-to-end neurorrhaphy in rat models of sciatic nerve injury. Evid Based Complement Alternat Med 2015:207245

    PubMed  PubMed Central  Google Scholar 

  6. Brighton CT, Black J, Friedenberg ZB, Esterhai JL, Day LJ, Connolly JF (1981) A multicenter study of the treatment of non-union with constant direct current. J Bone Jt Surg Am 63:2–13

    Article  CAS  Google Scholar 

  7. Wilson DH, Jagadeesh P (1976) Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field. Paraplegia 14:12–20

    CAS  PubMed  Google Scholar 

  8. Zhang Y, Yin L, Zheng N, Zhang L, Liu J, Liang W, Wang Q (2017) Icariin enhances remyelination process after acute demyelination induced by cuprizone exposure. Brain Res Bull 130:180–187

    Article  CAS  Google Scholar 

  9. Sabatier MJ, English AW (2015) Pathways mediating activity-induced enhancement of recovery from peripheral nerve injury. Exerc Sport Sci Rev 43:163–171

    Article  Google Scholar 

  10. Melcangi RC, Ballabio M, Cavarretta I, Gonzalez LC, Leonelli E, Veiga S, Martini L, Magnaghi V (2003) Effects of neuroactive steroids on myelin of peripheral nervous system. J Steroid Biochem Mol Biol 85:323–327

    Article  CAS  Google Scholar 

  11. Fargo KN, Alexander TD, Tanzer L, Poletti A, Jones KJ (2008) Androgen regulates neuritin mRNA levels in an in vivo model of steroid-enhanced peripheral nerve regeneration. J Neurotrauma 25:561–566

    Article  Google Scholar 

  12. Bialek M, Zaremba P, Borowicz KK, Czuczwar SJ (2004) Neuroprotective role of testosterone in the nervous system. Pol J Pharmacol 56:509–518

    CAS  PubMed  Google Scholar 

  13. Melcangi RC, Cavarretta IT, Ballabio M, Leonelli E, Schenone A, Azcoitia I, Miguel GL, Magnaghi V (2005) Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Brain Res Rev 48:328–338

    Article  CAS  Google Scholar 

  14. Magnaghi V, Cavarretta I, Zucchi I, Susani L, Rupprecht R, Hermann B, Martini L, Melcangi RC (1999) Po gene expression is modulated by androgens in the sciatic nerve of adult male rats. Brain Res Mol Brain Res 70:36–44

    Article  CAS  Google Scholar 

  15. Melcangi RC, Magnaghi V, Martini L (1999) Steroid metabolism and effects in central and peripheral glial cells. J Neurobiol 40:471–483

    Article  CAS  Google Scholar 

  16. Mourad PD, Lazar DA, Curra FP, Mohr BC, Andrus KC, Avellino AM, McNutt LD, Crum LA, Kliot M (2001) Ultrasound accelerates functional recovery after peripheral nerve damage. Neurosurgery 48(5):1136–1141

    CAS  PubMed  Google Scholar 

  17. Coers S, Tanzer L, Jones KJ (2002) Testosterone treatment attenuates the effects of facial nerve transection on glial fibrillary acidic protein (GFAP) levels in the hamster facial motor nucleus. Metab Brain Dis 17:55–63

    Article  CAS  Google Scholar 

  18. Crisci AR, Ferreira AL (2002) Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound Med Biol 28:1335–1341

    Article  Google Scholar 

  19. Liu Y, Chen J, Liu W, Lu X, Liu Z, Zhao X, Li G, Chen Z (2016) A modified approach to inducing bone marrow stromal cells to differentiate into cells with mature Schwann cell phenotypes. Stem Cells Dev 25:347–359

    Article  Google Scholar 

  20. Melcangi RC, Magnaghi V, Galbiati M, Ghelarducci B, Sebastiani L, Martini L (2000) The action of steroid hormones on peripheral myelin proteins: a possible new tool for the rebuilding of myelin? J Neurocytol 29:327–339

    Article  CAS  Google Scholar 

  21. Giatti S, Romano S, Pesaresi M, Cermenati G, Mitro N, Caruso D, Tetel MJ, Garcia-Segura LM, Melcangi RC (2015) Neuroactive steroids and the peripheral nervous system: an update. Steroids 103:23–30

    Article  CAS  Google Scholar 

  22. Brown TJ, Khan T, Jones KJ (1999) Androgen induced acceleration of functional recovery after rat sciatic nerve injury. Restor Neurol Neurosci 15:289–295

    CAS  PubMed  Google Scholar 

  23. Jiang W, Wang Y, Tang J, Peng J, Wang Y, Guo Q, Guo Z, Li P, Xiao B, Zhang J (2016) Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat. Sci Rep 6:22773

    Article  CAS  Google Scholar 

  24. Bervar M (2000) Video analysis of standing—an alternative footprint analysis to assess functional loss following injury to the rat sciatic nerve. J Neurosci Meth 102:109–116

    Article  CAS  Google Scholar 

  25. Magnaghi V, Cavarretta I, Galbiati M, Martini L, Melcangi RC (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res Brain Res Rev 37:360–371

    Article  CAS  Google Scholar 

  26. Kujawa KA, Emeric E, Jones KJ (1991) Testosterone differentially regulates the regenerative properties of injured hamster facial motoneurons. J Neurosci 11:3898–3906

    Article  CAS  Google Scholar 

  27. Kujawa KA, Jacob JM, Jones KJ (1993) Testosterone regulation of the regenerative properties of injured rat sciatic motor neurons. J Neurosci Res 35:268–273

    Article  CAS  Google Scholar 

  28. Karegar M, Mohammadi R (2015) Assessment of neuroregenerative effect of dihydrotestosterone, on peripheral nerve regeneration using allografts: a rat sciatic nerve model. Neurol Res 37:908–915

    Article  CAS  Google Scholar 

  29. Romo R, Hernandez A, Zainos A, Salinas E (1998) Somatosensory discrimination based on cortical microstimulation. Nature 392:387–390

    Article  CAS  Google Scholar 

  30. Lai C, Brow MA, Nave KA, Noronha AB, Quarles RH, Bloom FE, Milner RJ, Sutcliffe JG (1987) Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci USA 84:4337–4341

    Article  CAS  Google Scholar 

  31. D’Urso D, Brophy PJ, Staugaitis SM, Gillespie CS, Frey AB, Stempak JG, Colman DR (1990) Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 4:449–460

    Article  Google Scholar 

  32. Pareek S, Suter U, Snipes GJ, Welcher AA, Shooter EM, Murphy RA (1993) Detection and processing of peripheral myelin protein PMP22 in cultured Schwann cells. J Biol Chem 268:10372–10379

    CAS  PubMed  Google Scholar 

  33. Frye CA, Van Keuren KR, Erskine MS (1996) Behavioral effects of 3 alpha-androstanediol. I: modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav Brain Res 79:109–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81471270 and 81271967), the National Natural Science Youth Science Foundation of China (81401759) and the National Key Research and Development Project (2016YFC1101705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbing Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xue, P., Wei, R. et al. Dihydrotestosterone Treatment Accelerates Autograft Reversal Sciatic Nerve Regeneration in Rats. Neurochem Res 43, 659–668 (2018). https://doi.org/10.1007/s11064-018-2466-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2466-2

Keywords

Navigation