Skip to main content

Advertisement

Log in

Juvenile Rats Show Altered Gut Microbiota After Exposure to Isoflurane as Neonates

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inhaled anesthetic agents may be neurotoxic to the developing brain of a neonatal rodent. Isoflurane is a commonly used volatile anesthetic agent for maintenance of general anesthesia in various types of surgery. Neonatal exposure to isoflurane has been implicated in long-term neurocognitive dysfunction in children. The mechanisms of isoflurane-induced neurotoxicity have not been fully elucidated. Disruption of gut microbiota is currently attracting considerable interest as a vital pathogeny of some neurologic disorders. In the rat model, it is unknown whether neonatal exposure to isoflurane impacts the gut microbiota composition of juvenile animals. In the present study, postnatal 7-day-old male rats were exposed to 1 minimum alveolar concentration isoflurane for 4 h. Non-anesthetized rats served as controls. The fecal microbiomes of rats were observed using 16S RNA sequencing technique on postnatal day 42. Results indicated that composition of gut microbiota of isoflurane-exposed rats was different from controls. Several bacteria taxa in isoflurane-exposed rats were different from those of controls at various taxonomic levels. In particular, the abundance of Firmicutes, Proteobacteria, Clostridia, Clostridiales, and Lachnospiraceae were significantly increased in exposed rats and the abundance of Bacteroidetes, Actinobacteria, Bacteroidia and Bacteroidaceae were significantly decreased compared to controls. These results may offer new insights into the pathogenesis of isoflurane-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23(3):876–882

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu J, Zhao Y, Yang J, Zhang X, Zhang W, Wang P (2017) Neonatal repeated exposure to isoflurane not sevoflurane in mice reversibly impaired spatial cognition at juvenile-age. Neurochem Res 42(2):595–605. https://doi.org/10.1007/s11064-016-2114-7

    Article  CAS  PubMed  Google Scholar 

  3. Stratmann G, Lee J, Sall JW, Lee BH, Alvi RS, Shih J, Rowe AM, Ramage TM, Chang FL, Alexander TG, Lempert DK, Lin N, Siu KH, Elphick SA, Wong A, Schnair CI, Vu AF, Chan JT, Zai H, Wong MK, Anthony AM, Barbour KC, Ben-Tzur D, Kazarian NE, Lee JY, Shen JR, Liu E, Behniwal GS, Lammers CR, Quinones Z, Aggarwal A, Cedars E, Yonelinas AP, Ghetti S (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39(10):2275–2287. https://doi.org/10.1038/npp.2014.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith PA (2015) The tantalizing links between gut microbes and the brain. Nature 526(7573):312–314. https://doi.org/10.1038/526312a

    Article  CAS  PubMed  Google Scholar 

  5. Martin CR, Osadchiy V, Kalani A, Mayer EA (2018) The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 6(2):133–148. https://doi.org/10.1016/j.jcmgh.2018.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335. https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  8. Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33. https://doi.org/10.1016/j.ynstr.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Endres K, Schafer KH (2018) Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun 10(3):172–180. https://doi.org/10.1159/000488629

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56(2):775–788. https://doi.org/10.3233/JAD-160926

    Article  CAS  PubMed  Google Scholar 

  12. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, Musch MW, Liao F, Ward JF, Holtzman DM, Chang EB, Tanzi RE, Sisodia SS (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028. https://doi.org/10.1038/srep30028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81(3):369–382. https://doi.org/10.1002/ana.24901

    Article  PubMed  Google Scholar 

  14. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB, Group I-F (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lu Y, Cai M, Zhu C, Tan YL, Zheng P, Li HY, Zhu J, Zhou HD, Bu XL, Wang YJ (2018) Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63(4):1337–1346. https://doi.org/10.3233/JAD-180176

    Article  CAS  PubMed  Google Scholar 

  16. Seubert CN, Zhu W, Pavlinec C, Gravenstein N, Martynyuk AE (2013) Developmental effects of neonatal isoflurane and sevoflurane exposure in rats. Anesthesiology 119(2):358–364. https://doi.org/10.1097/ALN.0b013e318291c04e

    Article  CAS  PubMed  Google Scholar 

  17. Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, Visrodia KH, Alvi RS, Ku B, Lee MT, Dai R (2009) Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 110(4):834–848. https://doi.org/10.1097/ALN.0b013e31819c463d

    Article  CAS  PubMed  Google Scholar 

  18. Lee BH, Chan JT, Kraeva E, Peterson K, Sall JW (2014) Isoflurane exposure in newborn rats induces long-term cognitive dysfunction in males but not females. Neuropharmacology 83:9–17. https://doi.org/10.1016/j.neuropharm.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  20. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(6):852. https://doi.org/10.1016/j.chom.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  21. Torow N, Hornef MW (2017) The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol 198(2):557–563. https://doi.org/10.4049/jimmunol.1601253

    Article  CAS  PubMed  Google Scholar 

  22. Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA (2017) Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr 106(1):87–94. https://doi.org/10.1111/apa.13613

    Article  PubMed  Google Scholar 

  23. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173. https://doi.org/10.1016/j.bbi.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  24. Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, Zinser E, Bordag N, Magnes C, Frohlich E, Kashofer K, Gorkiewicz G, Holzer P (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Batai I, Kerenyi M, Tekeres M (1999) The impact of drugs used in anaesthesia on bacteria. Eur J Anaesthesiol 16(7):425–440

    CAS  PubMed  Google Scholar 

  26. Molliex S, Montravers P, Dureuil B, Desmonts JM (1998) Halogenated anesthetics inhibit Pseudomonas aeruginosa growth in culture conditions reproducing the alveolar environment. Anesth Analg 86(5):1075–1078

    CAS  PubMed  Google Scholar 

  27. Rueda-Martinez JL, Geronimo-Pardo M, Martinez-Monsalve A, Martinez-Serrano M (2014) Topical sevoflurane and healing of a post-operative surgical site superinfected by multi-drug-resistant Pseudomonas aeruginosa and susceptible Staphylococcus aureus in an immunocompromised patient. Surg Infect (Larchmt) 15(6):843–846. https://doi.org/10.1089/sur.2013.079

    Article  Google Scholar 

  28. Martinez-Serrano M, Geronimo-Pardo M, Martinez-Monsalve A, Crespo-Sanchez MD (2017) Antibacterial effect of sevoflurane and isoflurane. Rev Esp Quimioter 30(2):84–89

    CAS  PubMed  Google Scholar 

  29. Schoster A, Mosing M, Jalali M, Staempfli HR, Weese JS (2016) Effects of transport, fasting and anaesthesia on the faecal microbiota of healthy adult horses. Equine Vet J 48(5):595–602. https://doi.org/10.1111/evj.12479

    Article  CAS  PubMed  Google Scholar 

  30. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533. https://doi.org/10.1289/ehp.00108s3511

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110(4):796–804. https://doi.org/10.1097/01.anes.0000344728.34332.5d

    Article  PubMed  Google Scholar 

  32. Warner DO, Zaccariello MJ, Katusic SK, Schroeder DR, Hanson AC, Schulte PJ, Buenvenida SL, Gleich SJ, Wilder RT, Sprung J, Hu D, Voigt RG, Paule MG, Chelonis JJ, Flick RP (2018) Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo anesthesia safety in kids (MASK) study. Anesthesiology 129(1):89–105. https://doi.org/10.1097/ALN.0000000000002232

    Article  PubMed  Google Scholar 

  33. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 44:34–40. https://doi.org/10.1016/j.mib.2018.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  34. Falony G, Vieira-Silva S, Raes J (2018) Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat Microbiol 3(5):526–528. https://doi.org/10.1038/s41564-018-0143-5

    Article  CAS  PubMed  Google Scholar 

  35. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nguyen MT, Gotz F (2016) Lipoproteins of gram-positive bacteria: key players in the immune response and virulence. Microbiol Mol Biol Rev 80(3):891–903. https://doi.org/10.1128/MMBR.00028-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patterson E, RM OD, Murphy EF, Wall R, O OS, Nilaweera K, Fitzgerald GF, Cotter PD, Ross RP, Stanton C (2014) Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr 111(11):1905–1917. https://doi.org/10.1017/S0007114514000117

    Article  CAS  PubMed  Google Scholar 

  38. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5):e426–e437. https://doi.org/10.1111/j.1467-789X.2010.00825.x

    Article  CAS  PubMed  Google Scholar 

  40. Francis HM, Stevenson RJ (2011) Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci 125(6):943–955. https://doi.org/10.1037/a0025998

    Article  PubMed  Google Scholar 

  41. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, Fu X, Zhou R, Xu YF, Huang L, Zhu H, Han Y, Qin C (2017) Altered Gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis 60(4):1241–1257. https://doi.org/10.3233/JAD-170020

    Article  CAS  PubMed  Google Scholar 

  42. de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206. https://doi.org/10.1016/j.bbi.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  43. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, Bennett A, Jabado O, Hirschberg DL, Lipkin WI (2011) Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 6(9):e24585. https://doi.org/10.1371/journal.pone.0024585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popoff MR, Bouvet P (2009) Clostridial toxins. Future Microbiol 4(8):1021–1064. https://doi.org/10.2217/fmb.09.72

    Article  CAS  PubMed  Google Scholar 

  45. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118(3):502–515. https://doi.org/10.1097/ALN.0b013e3182834d77

    Article  CAS  PubMed  Google Scholar 

  46. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    CAS  PubMed  Google Scholar 

  47. Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, Rocha-Ferreira E, Hristova M, Bennett K, Fierens I, Burnett R, Chaban B, Alonso-Alconada D, Oliver-Taylor A, Tachsidis I, Rostami J, Gressens P, Sanders RD, Robertson NJ (2016) Isoflurane exposure induces cell death, microglial activation and modifies the expression of genes supporting neurodevelopment and cognitive function in the male newborn piglet brain. PLoS ONE 11(11):e0166784. https://doi.org/10.1371/journal.pone.0166784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A, Sirilun S, Chaiyasut C, Pratchayasakul W, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15(1):11. https://doi.org/10.1186/s12974-018-1055-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9:151. https://doi.org/10.1186/1742-2094-9-151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borenstein AR, Copenhaver CI, Mortimer JA (2006) Early-life risk factors for Alzheimer disease. Alzheimer Dis Assoc Disord 20(1):63–72. https://doi.org/10.1097/01.wad.0000201854.62116.d7

    Article  PubMed  Google Scholar 

  51. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768–774. https://doi.org/10.1212/WNL.0b013e3181b6bb95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whitaker EE, Christofi FL, Quinn KM, Wiemann BZ, Xia JC, Tobias JD, Bissonnette B (2017) Selective induction of IL-1beta after a brief isoflurane anesthetic in children undergoing MRI examination. J Anesth 31(2):219–224. https://doi.org/10.1007/s00540-016-2294-y

    Article  PubMed  Google Scholar 

  53. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huttenhower C, Kostic AD, Xavier RJ (2014) Inflammatory bowel disease as a model for translating the microbiome. Immunity 40(6):843–854. https://doi.org/10.1016/j.immuni.2014.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITC, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  56. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439. https://doi.org/10.1126/science.1237439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5(5):e10667. https://doi.org/10.1371/journal.pone.0010667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, Lu X, Zeissig S, Blumberg RS, Kasper DL (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156(1–2):123–133. https://doi.org/10.1016/j.cell.2013.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, A DL, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8(343):343ra382. https://doi.org/10.1126/scitranslmed.aad7121

    Article  CAS  Google Scholar 

  60. Lukanc B, Butinar J, Svete A, Prošek M, Seliškar A, Lukanc B, Butinar J, Svete A, Prošek M, Seliškar A (2017) (2017) The influence of isoflurane anesthesia on intestinal permeability in healthy dogs. Slov Vet Res 54(3):60 117–123.

    Google Scholar 

  61. Galland L (2014) The gut microbiome and the brain. J Med Food 17(12):1261–1272. https://doi.org/10.1089/jmf.2014.7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murphy KL, Baxter MG (2013) Long-term effects of neonatal single or multiple isoflurane exposures on spatial memory in rats. Front Neurol 4:87. https://doi.org/10.3389/fneur.2013.00087

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115(5):979–991. https://doi.org/10.1097/ALN.0b013e318234228b

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science Foundation for Youth Scholars of Peking University School and Hospital of Stomatology (No. PKUSS20160109). The authors thank Dr. Liu Miao for her kind technical assistance with this project. We also thank Nissi S. Wang, M.Sc., for reviewing and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likuan Wang.

Ethics declarations

Conflict of interest

None of the authors has a conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, X. & Wu, H. Juvenile Rats Show Altered Gut Microbiota After Exposure to Isoflurane as Neonates. Neurochem Res 44, 776–786 (2019). https://doi.org/10.1007/s11064-018-02707-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-02707-y

Keywords

Navigation