Skip to main content

Advertisement

Log in

Neuroprotective Effects of Phenolic and Carboxylic Acids on Oxidative Stress-Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hugel HM (2015) Brain food for Alzheimer-free ageing: focus on herbal medicines. Adv Exp Med Biol 863:95–116. https://doi.org/10.1007/978-3-319-18365-7_5

    Article  CAS  PubMed  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  3. Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 210(1):7–13. https://doi.org/10.1016/j.expneurol.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  4. Grimm A, Friedland K, Eckert A (2016) Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology 17(2):281–296. https://doi.org/10.1007/s10522-015-9618-4

    Article  CAS  PubMed  Google Scholar 

  5. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21(9):3017–3023

    Article  CAS  Google Scholar 

  6. Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34(4–5):385–397

    Article  CAS  Google Scholar 

  7. Stuchbury G, Munch G (2005) Alzheimer’s associated inflammation, potential drug targets and future therapies. J Neural Transm 112(3):429–453. https://doi.org/10.1007/s00702-004-0188-x

    Article  CAS  PubMed  Google Scholar 

  8. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35(3):419–432

    Article  CAS  Google Scholar 

  9. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20(2):558–567

    Article  CAS  Google Scholar 

  10. Gomez-Crisostomo NP, Rodriguez Martinez E, Rivas-Arancibia S (2014) Oxidative stress activates the transcription factors FoxO 1a and FoxO 3a in the hippocampus of rats exposed to low doses of ozone. Oxid Med Cell Longev. https://doi.org/10.1155/2014/805764

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281. https://doi.org/10.1007/s12264-013-1423-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosini M, Simoni E, Milelli A, Minarini A, Melchiorre C (2014) Oxidative stress in Alzheimer’s disease: are we connecting the dots? J Med Chem 57(7):2821–2831. https://doi.org/10.1021/jm400970m

    Article  CAS  PubMed  Google Scholar 

  13. Tan JL, Li QX, Ciccotosto GD, Crouch PJ, Culvenor JG, White AR, Evin G (2013) Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer’s disease amyloid precursor protein. PLoS ONE 8(4):e61246. https://doi.org/10.1371/journal.pone.0061246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639. https://doi.org/10.1038/nature02621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuppo EE, Forman LJ (2001) Free radical oxidative damage and Alzheimer’s disease. J Am Osteopath Assoc 101(12_suppl_1):11S–15S

    Google Scholar 

  16. Liang JH, Du J, Xu LD, Jiang T, Hao S, Bi J, Jiang B (2009) Catalpol protects primary cultured cortical neurons induced by Aβ1–42 through a mitochondrial-dependent caspase pathway. Neurochem Int 55(8):741–746. https://doi.org/10.1016/j.neuint.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:19. https://doi.org/10.1155/2014/761264

    Article  CAS  Google Scholar 

  18. Moneim AE (2015) Oxidant/antioxidant imbalance and the risk of Alzheimer’s disease. Curr Alzheimer Res 12(4):335–349

    Article  Google Scholar 

  19. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469(1):6–10. https://doi.org/10.1016/j.neulet.2009.11.033

    Article  CAS  PubMed  Google Scholar 

  20. Pocernich CB, Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 1822(5):625–630. https://doi.org/10.1016/j.bbadis.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  21. Luca M, Luca A, Calandra C (2015) The role of oxidative damage in the pathogenesis and progression of Alzheimer’s disease and vascular dementia. Oxid Med Cell Longev. https://doi.org/10.1155/2015/504678

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jayasena T, Poljak A, Smythe G, Braidy N, Munch G, Sachdev P (2013) The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease. Ageing Res Rev 12(4):867–883. https://doi.org/10.1016/j.arr.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  23. Prachayasittikul S, Buraparuangsang P, Worachartcheewan A, Isarankura-Na-Ayudhya C, Ruchirawat S, Prachayasittikul V (2008) Antimicrobial and antioxidative activities of bioactive constituents from Hydnophytum formicarum Jack. Molecules 13(4):904–921

    Article  CAS  Google Scholar 

  24. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) High therapeutic potential of Spilanthes acmella: a review. EXCLI J 12:291–312

    PubMed  PubMed Central  Google Scholar 

  25. Prachayasittikul S, Suphapong S, Worachartcheewan A, Lawung R, Ruchirawat S, Prachayasittikul V (2009) Bioactive metabolites from Spilanthes acmella Murr. Molecules 14(2):850–867. https://doi.org/10.3390/molecules14020850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wongsawatkul O, Prachayasittikul S, Isarankura-Na-Ayudhya C, Satayavivad J, Ruchirawat S, Prachayasittikul V (2008) Vasorelaxant and antioxidant activities of Spilanthes acmella Murr. Int J Mol Sci 9(12):2724–2744. https://doi.org/10.3390/ijms9122724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13(5):273–281

    Article  CAS  Google Scholar 

  28. Chang ZQ, Gebru E, Lee SP, Rhee MH, Kim JC, Cheng H, Park SC (2011) In vitro antioxidant and anti-inflammatory activities of protocatechualdehyde isolated from Phellinus gilvus. J Nutr Sci Vitaminol 57(1):118–122

    Article  CAS  Google Scholar 

  29. Dhanalakshmi C, Manivasagam T, Nataraj J, Justin Thenmozhi A, Essa MM (2015) Neurosupportive role of vanillin, a natural phenolic compound, on rotenone induced neurotoxicity in SH-SY5Y neuroblastoma cells. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/626028

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. https://doi.org/10.1155/2014/952943

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amin FU, Shah SA, Kim MO (2017) Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice. Sci Rep 7:40753. https://doi.org/10.1038/srep40753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan JJ, Jung JS, Kim TK, Hasan A, Hong CW, Nam JS, Song DK (2013) Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull 36(1):140–143

    Article  CAS  Google Scholar 

  33. Ozaki Y (1992) Antiinflammatory effect of tetramethylpyrazine and ferulic acid. Chem Pharm Bull 40(4):954–956

    Article  CAS  Google Scholar 

  34. Prabhakar PK, Prasad R, Ali S, Doble M (2013) Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 20(6):488–494. https://doi.org/10.1016/j.phymed.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  35. Huang M, Xie Y, Chen L, Chu K, Wu S, Lu J, Chen X, Wang Y, Lai X (2012) Antidiabetic effect of the total polyphenolic acids fraction from Salvia miltiorrhiza Bunge in diabetic rats. Phytother Res 26(6):944–948. https://doi.org/10.1002/ptr.3654

    Article  CAS  PubMed  Google Scholar 

  36. Chao CY, Yin MC (2009) Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog Dis 6(2):201–206. https://doi.org/10.1089/fpd.2008.0187

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Z, Zhang Y, Ding XR, Chen SH, Yang J, Wang XJ, Jia GL, Chen HS, Bo XC, Wang SQ (2007) Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antiviral Res 74(1):59–64. https://doi.org/10.1016/j.antiviral.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  38. Choi J, Jiang X, Jeong JB, Lee SH (2014) Anticancer activity of protocatechualdehyde in human breast cancer cells. J Med Food 17(8):842–848. https://doi.org/10.1089/jmf.2013.0159

    Article  CAS  PubMed  Google Scholar 

  39. Singh JC, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SS, Diwan PV (2015) Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm Biol 53(5):630–636. https://doi.org/10.3109/13880209.2014.935866

    Article  CAS  PubMed  Google Scholar 

  40. Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545(1):51–64. https://doi.org/10.1016/j.ejphar.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  41. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  43. Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenina T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang XW, Tamashiro KL, Aja S, Moran TH, Luthi-Carter R, Martin B, Maudsley S, Mattson MP, Cichewicz RH, Ross CA, Holtzman DM, Krainc D, Duan W (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18(1):153–158. https://doi.org/10.1038/nm.2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Si P, Qin H, Yin L, Yan L-J, Zhang C (2017) The neuroprotective effects of SIRT1 on NMDA-induced excitotoxicity. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2823454

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  46. Zhao X, Zhai S, An MS, Wang YH, Yang YF, Ge HQ, Liu JH, Pu XP (2013) Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson’s disease. PLoS ONE 8(10):e78220. https://doi.org/10.1371/journal.pone.0078220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, Munusamy A, Marimuthu Prabhu N, Vaseeharan B (2012) Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol 690(1–3):226–235. https://doi.org/10.1016/j.ejphar.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  48. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40(2):92–100. https://doi.org/10.3164/jcbn.40.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92(4):749–758. https://doi.org/10.1111/j.1471-4159.2004.02899.x

    Article  CAS  PubMed  Google Scholar 

  50. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21(3):83–86

    Article  CAS  Google Scholar 

  52. Heo SR, Han AM, Kwon YK, Joung I (2009) p62 protects SH-SY5Y neuroblastoma cells against H2O2-induced injury through the PDK1/Akt pathway. Neurosci Lett 450(1):45–50. https://doi.org/10.1016/j.neulet.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  53. Taveira M, Sousa C, Valentao P, Ferreres F, Teixeira JP, Andrade PB (2014) Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. J Steroid Biochem Mol Biol 140:106–115. https://doi.org/10.1016/j.jsbmb.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  54. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271. https://doi.org/10.1016/j.redox.2015.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Law BN, Ling AP, Koh RY, Chye SM, Wong YP (2014) Neuroprotective effects of orientin on hydrogen peroxide-induced apoptosis in SHSY5Y cells. Mol Med Rep 9(3):947–954. https://doi.org/10.3892/mmr.2013.1878

    Article  CAS  PubMed  Google Scholar 

  56. Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN (2014) Flavonoid–membrane interactions: Involvement of flavonoid–metal complexes in raft signaling. Biochim Biophys Acta 1838(5):1235–1246. https://doi.org/10.1016/j.bbamem.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  57. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43(4):348–361

    PubMed  Google Scholar 

  58. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salminen A, Kaarniranta K, Kauppinen A (2013) Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 14(2):3834–3859. https://doi.org/10.3390/ijms14023834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ye J, Han Y, Wang C, Yu W (2009) Cytoprotective effect of polypeptide from Chlamys farreri on neuroblastoma (SH-SY5Y) cells following H2O2 exposure involves scavenging ROS and inhibition JNK phosphorylation. J Neurochem 111(2):441–451. https://doi.org/10.1111/j.1471-4159.2009.06328.x

    Article  CAS  PubMed  Google Scholar 

  61. Jeong JB, Hong SC, Jeong HJ (2009) 3,4-Dihydroxybenzaldehyde purified from the barley seeds (Hordeum vulgare) inhibits oxidative DNA damage and apoptosis via its antioxidant activity. Phytomedicine 16(1):85–94. https://doi.org/10.1016/j.phymed.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  62. An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B (2006) Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 44(3):436–443. https://doi.org/10.1016/j.fct.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  63. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2):126–136. https://doi.org/10.1016/j.ceb.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Daitoku H, Sakamaki J, Fukamizu A (2011) Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim Biophys Acta 1813(11):1954–1960. https://doi.org/10.1016/j.bbamcr.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  65. Banreti A, Sass M, Graba Y (2013) The emerging role of acetylation in the regulation of autophagy. Autophagy 9(6):819–829. https://doi.org/10.4161/auto.23908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin CL, Huang WN, Li HH, Huang CN, Hsieh S, Lai C, Lu FJ (2015) Hydrogen-rich water attenuates amyloid beta-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem Biol Interact 240:12–21. https://doi.org/10.1016/j.cbi.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  67. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu R-M (2015) Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev 29(12):1316–1325. https://doi.org/10.1101/gad.265462.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813(1):238–259. https://doi.org/10.1016/j.bbamcr.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  69. Han SM, Kim JM, Park KK, Chang YC, Pak SC (2014) Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med 14:286. https://doi.org/10.1186/1472-6882-14-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project is supported by Mahidol University, The Thailand Research Fund (TRF), and the Office of the Higher Education Commission, Mahidol University under the National Research Universities Initiative and Annual Government Grant of Mahidol University (2556-2558 BE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamonrat Phopin or Supaluk Prachayasittikul.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay, N.H., Phopin, K., Suwanjang, W. et al. Neuroprotective Effects of Phenolic and Carboxylic Acids on Oxidative Stress-Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells. Neurochem Res 43, 619–636 (2018). https://doi.org/10.1007/s11064-017-2463-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2463-x

Keywords

Navigation