Skip to main content
Log in

Subtype Specification of Cerebral Cortical Neurons in Their Immature Stages

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The diversification of neuronal subtypes during corticogenesis is fundamental to the establishment of the complex cortical structure. Although subtype specification has been assumed to occur in neural progenitor cells, increasing evidence has begun to reveal the plasticity of subtype determination in immature neurons. Here, we summarize recent findings regarding the regulation of subtype specification during later periods of neuronal differentiation, such as the post-mitotic and post-migratory stages. We also discuss thalamocortical axons as an extra-cortical cue that provides information on the subtype determination of immature cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769. https://doi.org/10.1038/nrn3586

    CAS  PubMed  Google Scholar 

  2. Lodato S, Arlotta P (2015) Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol 31:699–720. https://doi.org/10.1146/annurev-cellbio-100814-125353

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kwan KY, Sestan N, Anton ES (2012) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139(9):1535–1546. https://doi.org/10.1242/dev.069963

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790. https://doi.org/10.1038/35097509

    CAS  PubMed  Google Scholar 

  5. Barber M, Pierani A (2016) Tangential migration of glutamatergic neurons and cortical patterning during development: lessons from Cajal-Retzius cells. Dev Neurobiol 76(8):847–881. https://doi.org/10.1002/dneu.22363

    CAS  PubMed  Google Scholar 

  6. Nakajima K (2007) Control of tangential/non-radial migration of neurons in the developing cerebral cortex. Neurochem Int 51(2–4):121–131. https://doi.org/10.1016/j.neuint.2007.05.006

    CAS  PubMed  Google Scholar 

  7. Takahashi T, Goto T, Miyama S, Nowakowski RS, Caviness VS Jr (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J Neurosci 19(23):10357–10371

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    PubMed  Google Scholar 

  9. Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183(123):425–427

    CAS  PubMed  Google Scholar 

  10. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8(6):438–450. https://doi.org/10.1038/nrn2097

    CAS  PubMed  Google Scholar 

  11. Kohwi M, Doe CQ (2013) Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 14(12):823–838

    PubMed  PubMed Central  Google Scholar 

  12. McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254(5029):282–285

    CAS  PubMed  Google Scholar 

  13. Frantz GD, McConnell SK (1996) Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17(1):55–61

    CAS  PubMed  Google Scholar 

  14. Alsio JM, Tarchini B, Cayouette M, Livesey FJ (2013) Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc Natl Acad Sci USA 110(8):E716–E725. https://doi.org/10.1073/pnas.1215707110

    CAS  PubMed  Google Scholar 

  15. Dominguez MH, Ayoub AE, Rakic P (2013) POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex 23(11):2632–2643. https://doi.org/10.1093/cercor/bhs252

    PubMed  Google Scholar 

  16. Frantz GD, Weimann JM, Levin ME, McConnell SK (1994) Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci 14(10):5725–5740

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirata T, Suda Y, Nakao K, Narimatsu M, Hirano T, Hibi M (2004) Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev Dyn 230(3):546–556. https://doi.org/10.1002/dvdy.20068

    CAS  PubMed  Google Scholar 

  18. Honda T, Kobayashi K, Mikoshiba K, Nakajima K (2011) Regulation of cortical neuron migration by the Reelin signaling pathway. Neurochem Res 36(7):1270–1279. https://doi.org/10.1007/s11064-011-0407-4

    CAS  PubMed  Google Scholar 

  19. Hevner RF, Daza RA, Rubenstein JL, Stunnenberg H, Olavarria JF, Englund C (2003) Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25(2–4):139–151. https://doi.org/10.1159/000072263DNE20030252_4139

    CAS  PubMed  Google Scholar 

  20. Dekimoto H, Terashima T, Katsuyama Y (2010) Dispersion of the neurons expressing layer specific markers in the reeler brain. Dev Growth Differ 52(2):181–193. https://doi.org/10.1111/j.1440-169X.2009.01153.x

    CAS  PubMed  Google Scholar 

  21. Boyle MP, Bernard A, Thompson CL, Ng L, Boe A, Mortrud M, Hawrylycz MJ, Jones AR, Hevner RF, Lein ES (2011) Cell-type-specific consequences of Reelin deficiency in the mouse neocortex, hippocampus, and amygdala. J Comp Neurol 519(11):2061–2089. https://doi.org/10.1002/cne.22655

    CAS  PubMed  Google Scholar 

  22. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221. https://doi.org/10.1016/j.neuron.2004.12.036

    CAS  PubMed  Google Scholar 

  23. Galazo MJ, Emsley JG, Macklis JD (2016) Corticothalamic projection neuron development beyond subtype specification: Fog2 and intersectional controls regulate intraclass neuronal diversity. Neuron 91(1):90–106. https://doi.org/10.1016/j.neuron.2016.05.024

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oishi K, Aramaki M, Nakajima K (2016) Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc Natl Acad Sci USA 113(12):3371–3376. https://doi.org/10.1073/pnas.1515949113

    CAS  PubMed  Google Scholar 

  25. Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29(2):353–366

    CAS  PubMed  Google Scholar 

  26. Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, McConnell SK (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57(3):364–377. https://doi.org/10.1016/j.neuron.2007.12.012

    CAS  PubMed  Google Scholar 

  27. Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sestan N, Molnar Z, Tarabykin V (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57(3):378–392. https://doi.org/10.1016/j.neuron.2007.12.028

    CAS  PubMed  Google Scholar 

  28. Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L (2008) Bhlhb5 regulates the postmitotic acquisition of area identities in layers II–V of the developing neocortex. Neuron 60(2):258–272. https://doi.org/10.1016/j.neuron.2008.08.006

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47(6):817–831. https://doi.org/10.1016/j.neuron.2005.08.030

    CAS  PubMed  Google Scholar 

  30. Azim E, Shnider SJ, Cederquist GY, Sohur US, Macklis JD (2009) Lmo4 and Clim1 progressively delineate cortical projection neuron subtypes during development. Cereb Cortex 19(Suppl 1):i62–i69. https://doi.org/10.1093/cercor/bhp030

    PubMed  PubMed Central  Google Scholar 

  31. Rouaux C, Arlotta P (2010) Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 13(11):1345–1347. https://doi.org/10.1038/nn.2658

    CAS  PubMed  PubMed Central  Google Scholar 

  32. De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Luscher C, Jabaudon D (2013) In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 16(2):193–200. https://doi.org/10.1038/nn.3299

    PubMed  Google Scholar 

  33. Tachikawa K, Sasaki S, Maeda T, Nakajima K (2008) Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci Res 60(2):135–146. https://doi.org/10.1016/j.neures.2007.10.006

    CAS  PubMed  Google Scholar 

  34. Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K (2011) The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31 (25):9426–9439. https://doi.org/10.1523/JNEUROSCI.0650-11.2011

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oishi K, Nakagawa N, Tachikawa K, Sasaki S, Aramaki M, Hirano S, Yamamoto N, Yoshimura Y, Nakajima K (2016) Identity of neocortical layer 4 neurons is specified through correct positioning into the cortex. Elife 5:e10907. https://doi.org/10.7554/eLife.10907

    PubMed  PubMed Central  Google Scholar 

  36. Ramos RL, Bai J, LoTurco JJ (2006) Heterotopia formation in rat but not mouse neocortex after RNA interference knockdown of DCX. Cereb Cortex 16(9):1323–1331. https://doi.org/10.1093/cercor/bhj074

    PubMed  Google Scholar 

  37. O’Leary DD, Chou SJ, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56(2):252–269. https://doi.org/10.1016/j.neuron.2007.10.010

    PubMed  Google Scholar 

  38. Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176

    CAS  PubMed  Google Scholar 

  39. Bishop KM, Rubenstein JL, O’Leary DD (2002) Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22(17):7627–7638

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Muzio L, Di Benedetto B, Stoykova A, Boncinelli E, Gruss P, Mallamaci A (2002) Conversion of cerebral cortex into basal ganglia in Emx2(-/-) Pax6(Sey/Sey) double-mutant mice. Nat Neurosci 5(8):737–745. https://doi.org/10.1038/nn892

    CAS  PubMed  Google Scholar 

  41. Zembrzycki A, Griesel G, Stoykova A, Mansouri A (2007) Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Dev 2:8. https://doi.org/10.1186/1749-8104-2-8

    PubMed  PubMed Central  Google Scholar 

  42. Sahara S, Kawakami Y, Izpisua Belmonte JC, O’Leary DD (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:10. https://doi.org/10.1186/1749-8104-2-10

    PubMed  PubMed Central  Google Scholar 

  43. Liu Q, Dwyer ND, O’Leary DD (2000) Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J Neurosci 20(20):7682–7690

    CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Leary DD (1989) Do cortical areas emerge from a protocortex? Trends Neurosci 12(10):400–406

    PubMed  Google Scholar 

  45. Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2(4):251–262. https://doi.org/10.1038/35067562

    CAS  PubMed  Google Scholar 

  46. Schlaggar BL, O’Leary DD (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252(5012):1556–1560

    CAS  PubMed  Google Scholar 

  47. Chou SJ, Babot Z, Leingartner A, Studer M, Nakagawa Y, O’Leary DD (2013) Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340(6137):1239–1242. https://doi.org/10.1126/science.1232806

    CAS  PubMed  Google Scholar 

  48. Vue TY, Lee M, Tan YE, Werkhoven Z, Wang L, Nakagawa Y (2013) Thalamic control of neocortical area formation in mice. J Neurosci 33(19):8442–8453. https://doi.org/10.1523/JNEUROSCI.5786-12.2013

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pouchelon G, Gambino F, Bellone C, Telley L, Vitali I, Luscher C, Holtmaat A, Jabaudon D (2014) Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511(7510):471–474. https://doi.org/10.1038/nature13390

    CAS  PubMed  Google Scholar 

  50. Li H, Fertuzinhos S, Mohns E, Hnasko TS, Verhage M, Edwards R, Sestan N, Crair MC (2013) Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79(5):970–986. https://doi.org/10.1016/j.neuron.2013.06.043

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sato H, Fukutani Y, Yamamoto Y, Tatara E, Takemoto M, Shimamura K, Yamamoto N (2012) Thalamus-derived molecules promote survival and dendritic growth of developing cortical neurons. J Neurosci 32(44):15388–15402. https://doi.org/10.1523/JNEUROSCI.0293-12.2012

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizuno H, Luo W, Tarusawa E, Saito YM, Sato T, Yoshimura Y, Itohara S, Iwasato T (2014) NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron 82(2):365–379. https://doi.org/10.1016/j.neuron.2014.02.026

    CAS  PubMed  Google Scholar 

  53. Narboux-Neme N, Evrard A, Ferezou I, Erzurumlu RS, Kaeser PS, Laine J, Rossier J, Ropert N, Sudhof TC, Gaspar P (2012) Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci 32(18):6183–6196. https://doi.org/10.1523/JNEUROSCI.0343-12.2012

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prothero J (1997) Cortical scaling in mammals: a repeating units model. J Hirnforsch 38(2):195–207

    CAS  PubMed  Google Scholar 

  55. Ajioka I, Nakajima K (2005) Birth-date-dependent segregation of the mouse cerebral cortical neurons in reaggregation cultures. Eur J Neurosci 22(2):331–342. https://doi.org/10.1111/j.1460-9568.2005.04214.x

    PubMed  Google Scholar 

  56. Gonda Y, Andrews WD, Tabata H, Namba T, Parnavelas JG, Nakajima K, Kohsaka S, Hanashima C, Uchino S (2013) Robo1 regulates the migration and laminar distribution of upper-layer pyramidal neurons of the cerebral cortex. Cereb Cortex 23(6):1495–1508. https://doi.org/10.1093/cercor/bhs141

    PubMed  Google Scholar 

  57. Hirota Y, Nakajima K (2017) Control of neuronal migration and aggregation by reelin signaling in the developing cerebral cortex. Front Cell Dev Biol 5:40. https://doi.org/10.3389/fcell.2017.00040

    PubMed  PubMed Central  Google Scholar 

  58. Sekine K, Kubo K, Nakajima K (2014) How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86:50–58. https://doi.org/10.1016/j.neures.2014.06.004

    CAS  PubMed  Google Scholar 

  59. He S, Li Z, Ge S, Yu YC, Shi SH (2015) Inside-out radial migration facilitates lineage-dependent neocortical microcircuit assembly. Neuron 86(5):1159–1166. https://doi.org/10.1016/j.neuron.2015.05.002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Nakajima Laboratory for valuable discussions. This work was supported by grants from the MEXT/JSPS KAKENHI (JP 17K07061, JP 16H06482, JP 15H02355), Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research, Takeda Science Foundation, and the Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Oishi or Kazunori Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oishi, K., Nakajima, K. Subtype Specification of Cerebral Cortical Neurons in Their Immature Stages. Neurochem Res 43, 238–244 (2018). https://doi.org/10.1007/s11064-017-2441-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2441-3

Keywords

Navigation