Skip to main content
Log in

Response of the GABAergic System to Axotomy of the Rat Facial Nerve

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5–14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line—derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5–14 days post-insult, but recovered at 4–5 weeks post-insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martin MR, Mason CA (1977) The seventh cranial nerve of the rat. Visualization of efferent and afferent pathways by cobalt precipitation. Brain Res 121:21–41

    Article  CAS  PubMed  Google Scholar 

  2. Kreutzberg GW (1996) Principles of neuronal regeneration. Acta Neurochir (Suppl 66):103–106

  3. Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Brain Res Rev 44:154–178

    Article  PubMed  Google Scholar 

  4. Hoover DB, Hancock JC (1985) Effect of facial nerve transection on acetylcholinesterase, choline acetyltransferase and [3H]quinuclidinyl benzilate binding in rat facial nuclei. Neuroscience 15:481–487

    Article  CAS  PubMed  Google Scholar 

  5. Che YH, Yamashita T, Tohyama M (2002) Changes in mRNA for VAMPs following facial nerve transection. J Chem Neuroanat 24:147–152

    Article  CAS  PubMed  Google Scholar 

  6. Eleore L, Vassias I, Vidal PP, de Waele C (2005) Modulation of the glutamatergic receptors (AMPA and NMDA) and of glutamate vesicular transporter 2 in the rat facial nucleus after axotomy. Neuroscience 136:147–160

    Article  CAS  PubMed  Google Scholar 

  7. Haas CA, Streit WJ, Kreutzberg GW (1990) Rat facial motoneurons express increased levels of calcitonin gene-related peptide mRNA in response to axotomy. J Neurosci Res 27:270–275

    Article  CAS  PubMed  Google Scholar 

  8. Saika T, Senba E, Noguchi K, Sato M, Kubo T, Matsunaga T, Tohyama M (1991) Changes in expression of peptides in rat facial motoneurons after facial nerve crushing and resection. Brain Res Mol Brain Res 11:187–196

    Article  CAS  PubMed  Google Scholar 

  9. Akazawa C, Nakamura Y, Sango K, Horie H, Kohsaka S (2004) Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience 125:171–178

    Article  CAS  PubMed  Google Scholar 

  10. Ichimiya T, Yamamoto S, Honda Y, Kikuchi R, Kohsaka S, Nakajima K (2013) Functional down-regulation of axotomized rat facial motoneurons. Brain Res 1507:35–44

    Article  CAS  PubMed  Google Scholar 

  11. Petroff OA (2002) GABA and glutamate in the human brain. Neuroscientist 8:562–573

    Article  CAS  PubMed  Google Scholar 

  12. Roth FC, Draguhn A (2012) GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 805830:12. doi:10.1155/2012/805830

    Google Scholar 

  13. Buddhala C, Hsu CC, Wu Y (2009) A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int 55:9–12

    Article  CAS  PubMed  Google Scholar 

  14. McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750

    CAS  PubMed  Google Scholar 

  16. Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and its receptors in epilepsy. Adv Exp Med Biol 548:92–103

    Article  CAS  PubMed  Google Scholar 

  17. Kudo Y, Abe N, Goto S, Fukuda H (1975) The chloride-dependent depression by GABA in the frog spinal cord. Eur J Pharmacol 32:251–259

    Article  CAS  PubMed  Google Scholar 

  18. Bowery NG, Brown DA (1974) Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Brain Res Rev 14:203–225

    Article  CAS  PubMed  Google Scholar 

  20. Chebib M, Johnston GA (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940

    Article  CAS  PubMed  Google Scholar 

  21. Vassias I, Lecolle S, Vidal PP, de Waele C (2005) Modulation of GABA receptor subunits in rat facial motoneurons after axotomy. Brain Res Mol Brain Res 135:260–275

    Article  CAS  PubMed  Google Scholar 

  22. Graeber MB, López-Redondo F, Ikoma E, Ishikawa M, Imai Y, Nakajima K, Kreutzberg GW, Kohsaka S (1998) The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res 813:241–253

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OJ, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Konigsmark BW (1970) Methods for counting of neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg, pp 315–340

    Chapter  Google Scholar 

  25. Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373:341–344

    Article  CAS  PubMed  Google Scholar 

  26. Ito S (2016) GABA and glycine in the developing brain. J Physiol Sci 66:279–375

    Article  Google Scholar 

  27. Xing GG, Wang R, Yang B, Zhang D (2006) Postnatal switching of NMDA receptor subunits from NR2B to NR2A in rat facial motor neurons. Eur J Neurosci 24:2987–2992

    Article  PubMed  Google Scholar 

  28. Chen P, Song J, Luo L, Cheng Q, Xiao H, Gong S (2016) Gene expression of NMDA and AMPA receptors in different facial motor neurons. Laryngoscope 126:E6–E11

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez FJ, Dewey DE, Carr PA, Cope TC, Fyffe RE (1997) Downregulation of metabotropic glutamate receptor 1a in motoneurons after axotomy. Neuroreport 8:1711–1716

    Article  CAS  PubMed  Google Scholar 

  30. García del Caño G, Gerrikagoitia I, Sarasa M, Matute C, Martínez-Millán L (2000) Ionotropic glutamate receptor subunits are differentially regulated in the motoneuronal pools of the rat hypoglossal nucleus in response to axotomy. J Neurocytol 29:509–523

    Article  Google Scholar 

  31. Sperk G, Drexel M, Pirker S (2009) Neuronal plasticity in animal models and the epileptic human hippocampus. Epilepsia 50(Suppl 12):29–31

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen L, Wang W, Tan T, Han H, Dong Z (2016) GABA(A) Receptors in the central nucleus of the amygdala are involved in pain- and itch-related responses. J Pain 17:181–189

    Article  CAS  PubMed  Google Scholar 

  33. Kramer PR, Bellinger LL (2013) Reduced GABAA receptor α6 expression in the trigeminal ganglion enhanced myofascial nociceptive response. Neuroscience 245:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakajima K, Kohsaka S (2005) Response of microglia to brain injury. In: Kettenmann H, Ransom BR (eds) Neuroglia second edition. Oxford University Press, New York, pp 443–453

    Google Scholar 

Download references

Acknowledgements

We thank Yoko Tohyama for her very good and careful care of the animals.

Funding

This research was not supported by any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RK performed the operation on the animals and was primarily responsible for analyzing the GABAARα1, GAD, VGAT and GAT-1 proteins by immunoblotting and immunohistochemistry. MH examined the effects of GDNF on the levels of GABAARα1. MK carried out Nissl staining. SK and KN participated in designing the study and performed some supporting experiments.

Corresponding author

Correspondence to Kazuyuki Nakajima.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, R., Hamanoue, M., Koshimoto, M. et al. Response of the GABAergic System to Axotomy of the Rat Facial Nerve. Neurochem Res 43, 324–339 (2018). https://doi.org/10.1007/s11064-017-2427-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2427-1

Keywords

Navigation