Skip to main content

Advertisement

Log in

Metformin Accelerates Glycolytic Lactate Production in Cultured Primary Cerebellar Granule Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metformin is the most frequently used drug for the treatment of type-II diabetes. As metformin has been reported to cross the blood–brain barrier, brain cells will encounter this drug. To test whether metformin may affect the metabolism of neurons, we exposed cultured rat cerebellar granule neurons to metformin. Treatment with metformin caused a time- and concentration-dependent increase in glycolytic lactate release from viable neurons as demonstrated by the three-to fivefold increase in extracellular lactate concentration determined after exposure to metformin. Half-maximal stimulation of lactate production was found after incubation of neurons for 4 h with around 2 mM or for 24 h with around 0.5 mM metformin. Neuronal cell viability was not affected by millimolar concentrations of metformin during acute incubations in the hour range nor during prolonged incubations, although alterations in cell morphology were observed during treatment with 10 mM metformin for days. The acute stimulation of neuronal lactate release by metformin was persistent upon removal of metformin from the medium and was not affected by the presence of modulators of adenosine monophosphate activated kinase activity. In contrast, rabeprazole, an inhibitor of the organic cation transporter 3, completely prevented metformin-mediated stimulation of neuronal lactate production. In summary, the data presented identify metformin as a potent stimulator of glycolytic lactate production in viable cultured neurons and suggest that organic cation transporter 3 mediates the uptake of metformin into neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bailey CJ, Day C (2004) Metformin: its botanical background. Pract Diab Int 21:115–117

    Article  Google Scholar 

  2. Pryor R, Cabreiro F (2015) Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J 471:307–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao B, Azmi AS, Ali S, Zaiem F, Sarkar FH (2014) Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. Ann Transl Med 2:59

    PubMed  PubMed Central  Google Scholar 

  4. Lv WS, Wen JP, Li L, Sun RX, Wang J, Xian YX, Cao CX, Wang YL, Gao YY (2012) The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 1444:11–19

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell PL, Nachbar R, Lachance D, St-Pierre P, Trottier J, Barbier O, Marette A (2017) Treatment with a novel agent combining docosahexaenoate and metformin increases protectin DX and IL-6 production in skeletal muscle and reduces insulin resistance in obese diabetic db/db mice. Diabetes Obes Metab 3:313–319

    Article  CAS  Google Scholar 

  6. Nagi DK, Yudkin JS (1993) Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects: a study of two ethnic groups. Diabetes Care 16:621–629

    Article  CAS  PubMed  Google Scholar 

  7. Rojas LB, Gomes MB (2013) Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marin-Penalver JJ, Martin-Timon I, Sevillano-Collantes C, Del Canizo-Gomez FJ (2016) Update on the treatment of type 2 diabetes mellitus. World J Diabetes 7:354–395

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeFronzo R, Fleming GA, Chen K, Bicsak TA (2016) Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism 65:20–29

    Article  CAS  PubMed  Google Scholar 

  10. Kajbaf F, Lalau J-D (2013) The prognostic value of blood pH and lactate and metformin concentrations in severe metformin-associated lactic acidosis. BMC Pharmacol Toxicol 14:22–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012) Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom 22:820–827

    Article  CAS  Google Scholar 

  12. Kajbaf F, Bennis Y, Hurtel-Lemaire AS, Andrejak M, Lalau JD (2015) Unexpectedly long half-life of metformin elimination in cases of metformin accumulation. Diabet Med 33:105–110

    Article  CAS  PubMed  Google Scholar 

  13. Wilcock C, Bailey CJ (1994) Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24:49–57

    Article  CAS  PubMed  Google Scholar 

  14. Labuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopien B (2010) Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 62:956–965

    Article  CAS  PubMed  Google Scholar 

  15. Oshima R, Yamada M, Kurogi E, Ogino Y, Serizawa Y, Tsuda S, Ma X, Egawa T, Hayashi T (2015) Evidence for organic cation transporter-mediated metformin transport and 5′-adenosine monophosphate-activated protein kinase activation in rat skeletal muscles. Metabolism 64:296–304

    Article  CAS  PubMed  Google Scholar 

  16. Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM (2015) Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol 88:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH (2011) Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 414:694–699

    Article  CAS  PubMed  Google Scholar 

  18. Nies AT, Koepsell H, Damme K, Schwab M (2011) Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. In: Fromm MF, Kim RB (eds) Drug transporters. Springer, Heidelberg, pp 105–167

    Chapter  Google Scholar 

  19. Perdan-Pirkmajer K, Pirkmajer S, Cerne K, Krzan M (2012) Molecular and kinetic characterization of histamine transport into adult rat cultured astrocytes. Neurochem Int 61:415–422

    Article  CAS  PubMed  Google Scholar 

  20. Shang T, Uihlein AV, Van Asten J, Kalyanaraman B, Hillard CJ (2003) 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J Neurochem 85:358–367

    Article  CAS  PubMed  Google Scholar 

  21. Xie Z, Dong Y, Scholz R, Neumann D, Zou MH (2008) Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 117:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, Chandel NS (2014) Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3:e02242

    Article  PubMed  PubMed Central  Google Scholar 

  24. El-Mir MY, Detaille D, G RV, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X (2008) Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 34:77–87

    Article  CAS  PubMed  Google Scholar 

  25. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, Zhou X, Qin Z, Jia J, Zhen X (2014) Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 40:131–142

    Article  CAS  PubMed  Google Scholar 

  28. Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91:409–414

    Article  CAS  PubMed  Google Scholar 

  29. Zhao RR, Xu XC, Xu F, Zhang WL, Zhang WL, Liu LM, Wang WP (2014) Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 448:414–417

    Article  CAS  PubMed  Google Scholar 

  30. Chung M-M, Chen Y-L, Pei D, Cheng Y-C, Sun B, Nicol CJ, Yen C-H, Chen H-M, Liang Y-J, Chiang M-C (2015) The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochem Biophys Acta-Mol Basis Dis 5:720–731

    Article  CAS  Google Scholar 

  31. Zhou C, Sun R, Zhuang S, Sun C, Jiang Y, Cui Y, Li S, Xiao Y, Du Y, Gu H, Liu Q (2016) Metformin prevents cerebellar granule neurons against glutamate-induced neurotoxicity. Brain Res Bull 121:241–245

    Article  CAS  PubMed  Google Scholar 

  32. Chen B, Teng Y, Zhang X, Lv X, Yin Y (2016) Metformin alleviated Aβ-Induced apoptosis via the suppression of JNK MAPK signaling pathway in cultured hippocampal neurons. Biomed Res Int 2016:1421430

    PubMed  PubMed Central  Google Scholar 

  33. Takata F, Dohgu S, Matsumoto J, Machida T, Kaneshima S, Matsuo M, Sakaguchi S, Takeshige Y, Yamauchi A, Kataoka Y (2013) Metformin induces up-regulation of blood–brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochem Biophys Res Commun 433:586–590

    Article  CAS  PubMed  Google Scholar 

  34. Westhaus A, Blumrich EM, Dringen R (2017) The antidiabetic drug metformin stimulates glycolytic lactate production in cultured primary rat astrocytes. Neurochem Res 42:294–305

    Article  CAS  PubMed  Google Scholar 

  35. Hohnholt M, Blumrich E, Waagepetersen H, Dringen R (2017) The anti-diabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes. J Neurosci Res. doi:10.1002/jnr.24050

    Article  PubMed  Google Scholar 

  36. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of rat astrocytes and neurons as model systems to study metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen H (eds) Neuromethods 90: brain energy metabolism. Springer, New York, pp 45–72

    Google Scholar 

  37. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Brain Res Protoc 2:223–228

    Article  CAS  PubMed  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  39. Courousse T, Gautron S (2015) Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther 146:94–103

    Article  CAS  PubMed  Google Scholar 

  40. Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M (2011) Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PLoS ONE 6:e22163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell RR, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277:H643–H649

    CAS  PubMed  Google Scholar 

  42. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32 Suppl 4:S7–S12

    Article  CAS  Google Scholar 

  43. Liu X, Chhipa RR, Nakano I, Dasgupta B (2014) The AMPK inhibitor Compound C is a potent AMPK-independent anti-glioma agent. Mol Cancer Ther 13:596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, Quan M, Guo L (2016) Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol 292:58–67

    Article  CAS  PubMed  Google Scholar 

  45. Gupta A, Bisht B, Dey CS (2011) Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 60:910–920

    Article  CAS  Google Scholar 

  46. Potter WB, O’Riordan KJ, Barnett D, Osting SM, Wagoner M, Burger C, Roopra A (2010) Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS ONE 5:e8996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bikas A, Jensen K, Patel A, Costello J Jr, McDaniel D, Klubo-Gwiezdzinska J, Larin O, Hoperia V, Burman KD, Boyle L, Wartofsky L, Vasko V (2015) Glucose-deprivation increases thyroid cancer cells sensitivity to metformin. Endocr Relat Cancer 22:919–932

    Article  CAS  PubMed  Google Scholar 

  48. Orecchioni S, Reggiani F, Talarico G, Mancuso P, Calleri A, Gregato G, Labanca V, Noonan DM, Dallaglio K, Albini A, Bertolini F (2015) The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer 136:E534–E544

    Article  CAS  PubMed  Google Scholar 

  49. Ming M, Sinnett-Smith J, Wang J, Soares HP, Young SH, Eibl G, Rozengurt E (2014) Dose-dependent AMPK-dependent and independent mechanisms of berberine and metformin inhibition of mTORC1, ERK, DNA synthesis and proliferation in pancreatic cancer cells. PLoS ONE 9:e114573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Allaman I, Grenningloh G, Magistretti P (2015) Modulation of astrocytic glucose metabolism by the antidiabetic drug metformin. J Neurochem 134(Suppl 1):260

    Google Scholar 

  51. Hohnholt MC, Blumrich EM, Dringen R (2015) Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neurosci Res 93:1127–1137

    Article  CAS  PubMed  Google Scholar 

  52. Tulpule K, Hohnholt MC, Dringen R (2013) Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 125:260–272

    Article  CAS  PubMed  Google Scholar 

  53. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100:4879–4884

    Article  CAS  PubMed  Google Scholar 

  54. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  55. Biffi E, Regalia G, Menegon A, Ferrigno G, Pedrocchi A (2013) The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study. PLoS ONE 8:e83899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smieszek A, Czyrek A, Basinska K, Trynda J, Skaradzinska A, Siudzinska A, Maredziak M, Marycz K (2015) Effect of metformin on viability, morphology, and ultrastructure of mouse bone marrow-derived multipotent mesenchymal stromal cells and Balb/3T3 embryonic fibroblast cell line. BioMed Res Int 2015:769402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059

    Article  CAS  Google Scholar 

  58. Kinaan M, Ding H, Triggle CR (2015) Metformin: an old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract 24:401–415

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee JY, Lee SH, Chang JW, Song JJ, Jung HH, Im GJ (2014) Protective effect of metformin on gentamicin-induced vestibulotoxicity in rat primary cell culture. Clin Exp Otorhinolaryngol 7:286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K-i (2005) Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol 70:1823–1831

    Article  CAS  PubMed  Google Scholar 

  61. Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, Portman MA, Chen E, Ferrin TE, Sali A, Giacomini KM (2010) Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genom 20:687–699

    Article  CAS  Google Scholar 

  62. Lee N, Duan H, Hebert MF, Liang CJ, Rice KM, Wang J (2014) Taste of a pill: organic cation transporter-3 (OCT3) mediates metformin accumulation and secretion in salivary glands. J Biol Chem 289:27055–27064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ouyang J, Parakhia RA, Ochs RS (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286:1–11

    Article  CAS  PubMed  Google Scholar 

  64. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Labuzek K, Liber S, Gabryel B, Okopien B (2010) Metformin has adenosine-monophosphate activated protein kinase (AMPK)-independent effects on LPS-stimulated rat primary microglial cultures. Pharmacol Rep 62:827–848

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, Ye J (2012) Mitochondrial inhibitor as a new class of insulin sensitizer. Acta Pharm Sin B 2:341–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liemburg-Apers DC, Schirris TJ, Russel FG, Willems PH, Koopman WJ (2015) Mitoenergetic dysfunction triggers a rapid compensatory increase in steady-state glucose flux. Biophys J 109:1372–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sokolov SS, Balakireva AV, Markova OV, Severin FF (2015) Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it. BioChemistry 80:559–564

    CAS  PubMed  Google Scholar 

  69. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  70. Jia Y, Ma Z, Liu X, Zhou W, He S, Xu X, Ren G, Xu G, Tian K (2015) Metformin prevents DMH-induced colorectal cancer in diabetic rats by reversing the Warburg effect. Cancer Med 4:1730–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guimaraes TA, Farias LC, Santos ES, de Carvalho Fraga CA, Orsini LA, de Freitas Teles L, Feltenberger JD, de Jesus SF, de Souza MG, Santos SH, de Paula AM, Gomez RS, Guimaraes AL (2016) Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget 7:55057–55068

    PubMed  PubMed Central  Google Scholar 

  72. Crabtree HG (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22:1289–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochem Biophys Acta 1807:568–576

    CAS  PubMed  Google Scholar 

  74. Chen M, Zhang J, Hu F, Liu S, Zhou Z (2015) Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment. Diabetes Metab Res Rev 31:781–789

    Article  CAS  PubMed  Google Scholar 

  75. Kajbaf F, De Broe ME, Lalau JD (2016) Therapeutic concentrations of metformin: a systematic review. Clin Pharmacokinet 55:439–459

    Article  CAS  PubMed  Google Scholar 

  76. He L, Wondisford FE (2015) Metformin action: concentrations matter. Cell Metab 21:159–162

    Article  CAS  PubMed  Google Scholar 

  77. Song JZ, Chen HF, Tian SJ, Sun ZP (1998) Determination of metformin in plasma by capillary electrophoresis using field-amplified sample stacking technique. J Chromatogr B Biomed Sci Appl 708:277–283

    Article  CAS  PubMed  Google Scholar 

  78. Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF (1981) Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 12:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Special Issue: In Honor of Professor Dr. Elias K. Michaelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumrich, EM., Dringen, R. Metformin Accelerates Glycolytic Lactate Production in Cultured Primary Cerebellar Granule Neurons. Neurochem Res 44, 188–199 (2019). https://doi.org/10.1007/s11064-017-2346-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2346-1

Keywords

Navigation