Skip to main content

Advertisement

Log in

Regulation of Glioma Cells Migration by DYRK2

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dual-specificity tyrosine-regulated kinase 2 (DYRK2), a protein kinase that phosphorylates its substrates on serine/threonine, is expressed in numerous human tumors, but little is known about its role in the pathophysiology of glioma. In this study, we made an effort to explore the expression and function in human glioma. Western blot and immunohistochemistry analysis were performed to investigate the expression of DYRK2 protein in glioma tissues in 84 patients. Wound healing and transwell assay were carried out to determine the cell migration ability. We showed that the level of DYRK2 was significantly decreased in high-grade glioma tissues compared with low-grade tissues. In addition, the expression level of DYRK2 was positively correlated with glioma pathological grade and E-cadherin expression. Kaplane–Meier analysis revealed that low expression of DYRK2 was related to poor prognosis of glioma patients. Furthermore, wound healing and transwell assay revealed that DYRK2 could suppress cell migration and affect the expression levels of E-cadherin and vimentin through PI3K/AKT/GSK3β signaling pathway. Taken together, our results implied that DYRK2 could serve as a promising prognostic biomarker as well as a potential therapeutical target of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jovcevska I, Kocevar N, Komel R (2013) Glioma and glioblastoma—how much do we (not) know? Mol Clin Oncol 1:935–941. doi:10.3892/mco.2013.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR (2015) Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 5:55. doi:10.3389/fonc.2015.00055

    PubMed  PubMed Central  Google Scholar 

  3. Mrugala MM (2013) Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med 15:221–230

    PubMed  Google Scholar 

  4. Miller CT, Aggarwal S, Lin TK, Dagenais SL, Contreras JI, Orringer MB, Glover TW, Beer DG, Lin L (2003) Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res 63:4136–4143

    CAS  PubMed  Google Scholar 

  5. Enomoto Y, Yamashita S, Yoshinaga Y, Fukami Y, Miyahara S, Nabeshima K, Iwasaki A (2014) Downregulation of DYRK2 can be a predictor of recurrence in early stage breast cancer. Tumour Biol 35:11021–11025. doi:10.1007/s13277-014-2413-z

    Article  CAS  PubMed  Google Scholar 

  6. Yamashita S, Chujo M, Moroga T, Anami K, Tokuishi K, Miyawaki M, Kawano Y, Takeno S, Yamamoto S, Kawahara K (2009) DYRK2 expression may be a predictive marker for chemotherapy in non-small cell lung cancer. Anticancer Res 29:2753–2757

    CAS  PubMed  Google Scholar 

  7. Yamaguchi N, Mimoto R, Yanaihara N, Imawari Y, Hirooka S, Okamoto A, Yoshida K (2015) DYRK2 regulates epithelial-mesenchymal-transition and chemosensitivity through Snail degradation in ovarian serous adenocarcinoma. Tumour Biol 36:5913–5923. doi:10.1007/s13277-015-3264-y

    Article  CAS  PubMed  Google Scholar 

  8. Aranda S, Laguna A and de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25:449–462. doi:10.1096/fj.10-165837

    Article  CAS  PubMed  Google Scholar 

  9. Mimoto R, Taira N, Takahashi H, Yamaguchi T, Okabe M, Uchida K, Miki Y, Yoshida K (2013) DYRK2 controls the epithelial-mesenchymal transition in breast cancer by degrading Snail. Cancer Lett 339:214–225. doi:10.1016/j.canlet.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  10. Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan PG, Rao A (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441:646–650. doi:10.1038/nature04631

    Article  CAS  PubMed  Google Scholar 

  11. Varjosalo M, Bjorklund M, Cheng F, Syvanen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg HG, He WW, Ojala P, Taipale J (2008) Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 133:537–548. doi:10.1016/j.cell.2008.02.047

    Article  CAS  PubMed  Google Scholar 

  12. Perez M, Garcia-Limones C, Zapico I, Marina A, Schmitz ML, Munoz E, Calzado MA (2012) Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways. J Mol Cell Biol 4:316–330. doi:10.1093/jmcb/mjs047

    Article  CAS  PubMed  Google Scholar 

  13. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25:725–738. doi:10.1016/j.molcel.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  14. Weiss CS, Ochs MM, Hagenmueller M, Streit MR, Malekar P, Riffel JH, Buss SJ, Weiss KH, Sadoshima J, Katus HA, Hardt SE (2013) DYRK2 negatively regulates cardiomyocyte growth by mediating repressor function of GSK-3beta on eIF2Bepsilon. PLoS ONE 8:e70848. doi:10.1371/journal.pone.0070848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong Z, Hu Z, Jiang Y, Sun R, Chen X, Chu H, Zeng M, Sun C (2016) Interleukin-11 promotes epithelial-mesenchymal transition in anaplastic thyroid carcinoma cells through PI3K/Akt/GSK3beta signaling pathway activation. Oncotarget. doi:10.18632/oncotarget.10831

    Google Scholar 

  16. Dai J, Qian C, Su M, Chen M, Chen J (2016) Gastrokine-2 suppresses epithelial mesenchymal transition through PI3K/AKT/GSK3beta signaling in gastric cancer. Tumour Biol. doi:10.1007/s13277-016-5107-x

    PubMed Central  Google Scholar 

  17. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13:1339–1348. doi:10.1093/neuonc/nor133

    Article  PubMed  PubMed Central  Google Scholar 

  18. Houdek Z, Cendelin J, Kulda V, Babuska V, Cedikova M, Kralickova M, Pachernik J, Stefano GB, Vozeh F (2012) Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monit 18:BR174–B180

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jansen M, Yip S, Louis DN (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9:717–726. doi:10.1016/S1474-4422(10)70105-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rock K, McArdle O, Forde P, Dunne M, Fitzpatrick D, O’Neill B, Faul C (2012) A clinical review of treatment outcomes in glioblastoma multiforme—the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? Br J Radiol 85:e729–e733. doi:10.1259/bjr/83796755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Wu Y, Miao X, Zhu X, Miao X, He Y, Zhong F, Ding L, Liu J, Tang J, Huang Y, Xu X, He S (2015) Silencing of DYRK2 increases cell proliferation but reverses CAM-DR in non-Hodgkin’s lymphoma. Int J Biol Macromol 81:809–817. doi:10.1016/j.ijbiomac.2015.08.067

    Article  CAS  PubMed  Google Scholar 

  22. Nomura S, Suzuki Y, Takahashi R, Terasaki M, Kimata R, Terasaki Y, Hamasaki T, Kimura G, Shimizu A, Kondo Y (2015) Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) as a novel marker in T1 high-grade and T2 bladder cancer patients receiving neoadjuvant chemotherapy. BMC Urol 15:53. doi:10.1186/s12894-015-0040-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788. doi:10.1007/s00018-008-8281-1

    Article  CAS  PubMed  Google Scholar 

  24. Wijnhoven BP, Dinjens WN, Pignatelli M (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87:992–1005. doi:10.1046/j.1365-2168.2000.01513.x

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Liu M, Deng C, Gu Z, Gao Y (2012) Expression of transforming growth factor-beta1 (TGF-beta1) and E-cadherin in glioma. Tumour Biol 33:1477–1484. doi:10.1007/s13277-012-0398-z

    Article  CAS  PubMed  Google Scholar 

  26. Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z, Zhou J (2015) CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3beta/snail signaling. Cancer Lett 358:124–135. doi:10.1016/j.canlet.2014.11.044

    Article  CAS  PubMed  Google Scholar 

  27. Liang Y, Jing Z, Deng H, Li Z, Zhuang Z, Wang S, Wang Y (2015) Soluble epoxide hydrolase inhibition ameliorates proteinuria-induced epithelial-mesenchymal transition by regulating the PI3K-Akt-GSK-3beta signaling pathway. Biochem Biophys Res Commun 463:70–75. doi:10.1016/j.bbrc.2015.05.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81502169, 81572491, 81373223, and 81571616); Technology Innovation Programme of Jiangsu Province (KYZZ15_0351), Technology Innovation Programme of Nantong University (YKC15068) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhang, L., Wang, D. et al. Regulation of Glioma Cells Migration by DYRK2. Neurochem Res 42, 3093–3102 (2017). https://doi.org/10.1007/s11064-017-2345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2345-2

Keywords

Navigation