Skip to main content

Advertisement

Log in

The Neuroprotective Effect of Curcumin Against Nicotine-Induced Neurotoxicity is Mediated by CREB–BDNF Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nicotine abuse adversely affects brain and causes apoptotic neurodegeneration. Curcumin- a bright yellow chemical compound found in turmeric is associated with neuroprotective properties. The current study was designed to evaluate the role of CREB–BDNF signaling in mediating the neuroprotective effects of curcumin against nicotine-induced apoptosis, oxidative stress and inflammation in rats. Sixty adult male rats were divided randomly into six groups. Group 1 received 0.7 ml/rat normal saline, group 2 received 6 mg/kg nicotine. Groups 3, 4, 5 and 6 were treated concurrently with nicotine (6 mg/kg) and curcumin (10, 20, 40 and 60 mg/kg i.p. respectively) for 21 days. Open Field Test (OFT) was used to evaluate the motor activity. Hippocampal oxidative, anti-oxidant, inflammatory and apoptotic factors were evaluated. Furthermore, phosphorylated brain cyclic adenosine monophosphate (cAMP) response element binding protein (P-CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene and protein levels. We found that nicotine disturbed the motor activity in OFT and simultaneous treatment with curcumin (40 and 60 mg/kg) reduced the nicotine-induced motor activity disturbances. In addition, nicotine treatment increased lipid peroxidation and the levels of GSH, IL-1β, TNF-α and Bax, while reducing Bcl-2, P-CREB and BDNF levels in the hippocampus. Nicotine also reduced the activity of superoxide dismutase, glutathione peroxidase and glutathione reductase in hippocampus. In contrast, various doses of curcumin attenuated nicotine-induced apoptosis, oxidative stress and inflammation; while elevating P-CREB and BDNF levels. Thus, curcumin via activation of P-CREB/BDNF signaling pathway, confers neuroprotection against nicotine-induced inflammation, apoptosis and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Motaghinejad M, Motevalian M, Shabab B (2016) Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 619:106–113

    Article  CAS  PubMed  Google Scholar 

  2. Motaghinejad M, Motevalian M, Ebrahimzadeh A (2015) Reduction of methylphenidate induced anxiety, depression and cognition impairment by various doses of venlafaxine in rat. Int J Prev Med 4(6):52. doi:10.4103/2008-7802.158181

    Article  Google Scholar 

  3. Shojaii A, Motaghinejad M, Norouzi S, Motevalian M (2015) Evaluation of anti-inflammatory and analgesic activity of the extract and fractions of Astragalus hamosus in animal models. Iran J Pharm Res 14:263–269

    PubMed  PubMed Central  Google Scholar 

  4. Noori N, Bangash MY, Motaghinejad M, Hosseini P, Noudoost B (2014) Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats. Adv Biomed Res 6(3):251. doi:10.4103/2277-9175.146377

    Article  Google Scholar 

  5. Sershen H, Reith M, Banay-Schwartz M, Lajtha A (1982) Effects of prenatal administration of nicotine on amino acid pools, protein metabolism, and nicotine binding in the brain. Neurochem Res 7:1515–1522

    Article  CAS  PubMed  Google Scholar 

  6. Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    Article  CAS  PubMed  Google Scholar 

  7. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliveira-da-Silva A, Vieira FB, Cristina-Rodrigues F, Filgueiras CC, Manhães AC, Abreu-Villaça Y (2009) Increased apoptosis and reduced neuronal and glial densities in the hippocampus due to nicotine and ethanol exposure in adolescent mice. Int J Dev Neurosci 27:539–548

    Article  CAS  PubMed  Google Scholar 

  9. Motaghinejad M, Fatima S, Karimian M, Ganji S (2016) Protective effects of forced exercise against nicotine-induced anxiety, depression and cognition impairment in rat. J Basic Clin Physiol Pharmacol 27:19–27

    Article  CAS  PubMed  Google Scholar 

  10. Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cardinale A, Nastrucci C, Cesario A, Russo P (2012) Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 42:68–89

    Article  CAS  PubMed  Google Scholar 

  12. Toth E (1996) Effect of nicotine on the level of extracellular amino acids in the hippocampus of rat. Neurochem Res 21:903–907

    Article  CAS  PubMed  Google Scholar 

  13. Shim SB, Lee SH, Chae KR, Kim CK, Hwang DY, Kim BG, Jee SW, Lee SH, Sin JS, Bae CJ (2008) Nicotine leads to improvements in behavioral impairment and an increase in the nicotine acetylcholine receptor in transgenic mice. Neurochem Res 33:1783–1788

    Article  CAS  PubMed  Google Scholar 

  14. Singer S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, Lajtha A (2004) Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem Res 29:1779–1792

    Article  CAS  PubMed  Google Scholar 

  15. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  PubMed  Google Scholar 

  16. Qiao D, Seidler FJ, Slotkin TA (2005) Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol 206:17–26

    Article  CAS  PubMed  Google Scholar 

  17. Cheng Y-F, Guo L, Xie Y-S, Liu Y-S, Zhang J, Wu Q-W, Li J-M (2013) Curcumin rescues aging-related loss of hippocampal synapse input specificity of long term potentiation in mice. Neurochem Res 38:98–107

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379

    Article  CAS  PubMed  Google Scholar 

  19. Panchal HD, Vranizan K, Lee CY, Ho J, Ngai J, Timiras PS (2008) Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem Res 33:1701–1710

    Article  CAS  PubMed  Google Scholar 

  20. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Springer, New York, pp 197–212

    Chapter  Google Scholar 

  21. Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S (2015) Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 67:230–235

    Article  CAS  PubMed  Google Scholar 

  22. Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59

    Article  CAS  PubMed  Google Scholar 

  23. Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ (2012) Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 21:1123–1140

    Article  CAS  PubMed  Google Scholar 

  24. Motaghinejad M, Motevalian M, Fatima S, Hashemi H, Gholami M (2017) Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed Pharmacother 87:721–740

    Article  CAS  PubMed  Google Scholar 

  25. Huang H-C, Chang P, Dai X-L, Jiang Z-F (2012) Protective effects of curcumin on amyloid-β-induced neuronal oxidative damage. Neurochem Res 37:1584–1597

    Article  CAS  PubMed  Google Scholar 

  26. Huang H-C, Xu K, Jiang Z-F (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis 32:981–996

    CAS  PubMed  Google Scholar 

  27. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y, Guo X, Mu J (2014) Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 39:1322–1331

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Torres I, Ruiz-Ramirez A, Banos G, El-Hafidi M (2013) Hibiscus Sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc Hematol Agents Med Chem (Former Curr Med Chem-Cardiovasc Hematol Agents) 11:25–37

    CAS  Google Scholar 

  29. Tiwari V, Chopra K (2012) Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology (Berlin) 224:519–535

    Article  CAS  Google Scholar 

  30. Lu H-F, Yang J-S, Lai K-C, Hsu S-C, Hsueh S-C, Chen Y-L, Chiang J-H, Lu C-C, Lo C, Yang M-D (2009) Curcumin-induced DNA damage and inhibited DNA repair genes expressions in mouse–rat hybrid retina ganglion cells (N18). Neurochem Res 34:1491

    Article  CAS  PubMed  Google Scholar 

  31. Hattiangady B, Rao MS, Shetty GA, Shetty AK (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195:353–371

    Article  CAS  PubMed  Google Scholar 

  32. Lee J, Kim C-H, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, Murphy AN, Lonze BE, Kim K-S, Ginty DD (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280:40398–40401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X (2006) Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 1122:56–64

    Article  CAS  PubMed  Google Scholar 

  34. Wang R, Li Y-H, Xu Y, Li Y-B, Wu H-L, Guo H, Zhang J-Z, Zhang J-J, Pan X-Y, Li X-J (2010) Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 34:147–153

    Article  CAS  PubMed  Google Scholar 

  35. Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S (2015) The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 29:299–309

    Article  CAS  PubMed  Google Scholar 

  36. Motaghinejad M, Motevalian M, Falak R, Heidari M, Sharzad M, Kalantari E (2016) Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway. J Neural Transm 123:1463–1477

    Article  CAS  PubMed  Google Scholar 

  37. Motaghinejad M, Motevalian M, Larijani SF, Khajehamedi Z (2015) Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat. Adv Biomed Res 4:134

    Article  PubMed  PubMed Central  Google Scholar 

  38. Motaghinejad M, Bangash MY, Hosseini P, Karimian SM, Motaghinejad O (2015) Attenuation of morphine withdrawal syndrome by various dosages of curcumin in comparison with clonidine in mouse: possible mechanism. Iran J Med Sci 40:125

    PubMed  PubMed Central  Google Scholar 

  39. Motaghinejad M, Motevalian M (2016) Involvement of AMPA/kainate and GABA A receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol 784:181–191

    Article  CAS  PubMed  Google Scholar 

  40. Motaghinejad M, Motevalian M, Abdollahi M, Heidari M, Madjd Z (2017) Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of Hippocampus via CREB/BDNF pathway in rats. Neurotox Res 31(3):373–399

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Woltjer RL, Cimino P, Pan C, Montine KS, Zhang J, Montine TJ (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19:869–871

    Article  CAS  PubMed  Google Scholar 

  42. Bruin JE, Gerstein HC, Holloway AC (2010) Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci 116:364–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morissette SB, Tull MT, Gulliver SB, Kamholz BW, Zimering RT (2007) Anxiety, anxiety disorders, tobacco use, and nicotine: a critical review of interrelationships. Psychol Bull 133:245

    Article  PubMed  Google Scholar 

  44. Gilhotra N, Dhingra D (2010) GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 1352:167–175

    Article  CAS  PubMed  Google Scholar 

  45. Rajeswari A (2006) Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydro pyridine. Eur Rev Med Pharmacol Sci 10:157–162

    CAS  PubMed  Google Scholar 

  46. Şener G, Şehirli Ö, İpçi Y, Çetinel Ş, Çikler E, Gedik N, Alican I (2005) Protective effects of taurine against nicotine-induced oxidative damage of rat urinary bladder and kidney. Pharmacology 74:37–44

    Article  PubMed  Google Scholar 

  47. Kang ES, Kim HJ, Eun SY, Paek KS, Kim HJ, Chang KC, Lee JH, Lee HT, Kim J-H, Nishinaka T (2007) Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radical Biol Med 43:535–545

    Article  CAS  Google Scholar 

  48. Raza H, John A, Brown EM, Benedict S, Kambal A (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226:161–168

    Article  CAS  PubMed  Google Scholar 

  49. Bergman J, Miodownik C, Bersudsky Y, Sokolik S, Lerner PP, Kreinin A, Polakiewicz J, Lerner V (2013) Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 36:73–77

    Article  CAS  PubMed  Google Scholar 

  50. Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  CAS  PubMed  Google Scholar 

  51. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

  52. Arnson Y, Shoenfeld Y, Amital H (2010) Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 34:J258–J265

    Article  CAS  PubMed  Google Scholar 

  53. Nunes SOV, Vargas HO, Prado E, Barbosa DS, de Melo LP, Moylan S, Dodd S, Berk M (2013) The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence. Neurosci Biobehav Rev 37:1336–1345

    Article  CAS  PubMed  Google Scholar 

  54. Jiang J, Wang W, Sun YJ, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood–brain barrier damage. Eur J Pharmacol 561:54–62

    Article  CAS  PubMed  Google Scholar 

  55. Kuhad A, Pilkhwal S, Sharma S, Tirkey N, Chopra K (2007) Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J Agric Food Chem 55:10150–10155

    Article  CAS  PubMed  Google Scholar 

  56. Zeidler R, Albermann K, Lang S (2007) Nicotine and apoptosis. Apoptosis 12:1927–1943

    Article  CAS  PubMed  Google Scholar 

  57. Zhao J, Zhao Y, Zheng W, Lu Y, Feng G, Yu S (2008) Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res 1229:224–232

    Article  CAS  PubMed  Google Scholar 

  58. Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    Article  CAS  PubMed  Google Scholar 

  59. Delivoria-Papadopoulos M, Ashraf QM, Mishra OP (2007) Differential expression of apoptotic proteins following hypoxia-induced CREB phosphorylation in the cerebral cortex of newborn piglets. Neurochem Res 32:1256–1263

    Article  CAS  PubMed  Google Scholar 

  60. Kim DW, Lee JH, Park SK, Yang W-M, Jeon GS, Lee YH, Chung CK, Cho SS (2007) Astrocytic expressions of phosphorylated Akt, GSK3β and CREB following an excitotoxic lesion in the mouse hippocampus. Neurochem Res 32:1460–1468

    Article  CAS  PubMed  Google Scholar 

  61. Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S-i, Onodera S (2016) Protective effect of silibinin on learning and memory impairment in LPS-Treated Rats via ROS–BDNF–TrkB Pathway. Neurochem Res 41:1662–1672

    Article  CAS  PubMed  Google Scholar 

  62. Pandey SC, Zhang H, Roy A, Misra K (2006) Central and medial amygdaloid brain-derived neurotrophic factor signaling plays a critical role in alcohol-drinking and anxiety-like behaviors. J Neurosci 26:8320–8331

    Article  CAS  PubMed  Google Scholar 

  63. Rouaux C, Panteleeva I, René F, de Aguilar J-LG, Echaniz-Laguna A, Dupuis L, Menger Y, Boutillier A-L, Loeffler J-P (2007) Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci 27:5535–5545

    Article  CAS  PubMed  Google Scholar 

  64. Oliveira-da-Silva A, Manhaes A, Cristina-Rodrigues F, Filgueiras C, Abreu-Villaca Y (2010) Hippocampal increased cell death and decreased cell density elicited by nicotine and/or ethanol during adolescence are reversed during drug withdrawal. Neuroscience 167:163–173

    Article  CAS  PubMed  Google Scholar 

  65. Shin HJ, Lee JY, Son E, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS (2007) Curcumin attenuates the kainic acid-induced hippocampal cell death in the mice. Neurosci Lett 416:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Motaghinejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaghinejad, M., Motevalian, M., Fatima, S. et al. The Neuroprotective Effect of Curcumin Against Nicotine-Induced Neurotoxicity is Mediated by CREB–BDNF Signaling Pathway. Neurochem Res 42, 2921–2932 (2017). https://doi.org/10.1007/s11064-017-2323-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2323-8

Keywords

Navigation