Skip to main content
Log in

14,15-EET Suppresses Neuronal Apoptosis in Ischemia–Reperfusion Through the Mitochondrial Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia–reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia–reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen–glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia–reperfusion by 14,15-EET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

14,15-EET:

14,15-Epoxyeicosatrienoic acid

OGD/R:

Oxygen–glucose deprivation and reoxygenation

sEH:

Soluble epoxide hydrolase

AIF:

Apoptosis-inducing factor

MCAO:

Middle cerebral artery occlusion

CREB:

cAMP response element-binding protein

LDH:

Lactate dehydrogenase

Smac:

Second mitochondrial activator of caspases

References

  1. Kristen AV, Ackermann K, Buss S, Lehmann L, Schnabel PA, Haunstetter A, Katus HA, Hardt SE (2013) Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion. Cardiovasc Pathol 22(4):280–286

    Article  CAS  PubMed  Google Scholar 

  2. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T (2011) Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA 108(27):10952–10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akpan N, Serrano-Saiz E, Zacharia BE, Otten ML, Ducruet AF, Snipas SJ, Liu W, Velloza J, Cohen G, Sosunov SA, Frey WH, Salvesen GS, Connolly ES Jr, Troy CM (2011) Intranasal delivery of caspase-9 inhibitor reduces caspase-6-dependent axon/neuron loss and improves neurological function after stroke. J Neurosci 31(24):8894–8904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thal SE, Zhu C, Thal SC, Blomgren K, Plesnila N (2011) Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia inmice. Neurosci Lett 499(1):1–3

    Article  CAS  PubMed  Google Scholar 

  5. Sun Y, Zhang Y, Wang X, Blomgren K, Zhu C (2012) Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxia-ischemia. Mol Neurodegener 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koerner IP, Jacks R, DeBarber AE, Koop D, Mao P, Grant DF, Alkayed NJ (2007) Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemicinjury. J Neurosci 27(17):4642–4649

    Article  CAS  PubMed  Google Scholar 

  7. Li R, Xu X, Chen C, Yu X, Edin ML, Degraff LM, Lee CR, Zeldin DC, Wang DW (2012) Cytochrome P450 2J2 is protective against global cerebral ischemia in transgenic mice. Prostaglandins Other Lipid Mediat 99(3–4):68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD (2009) Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am J Pathol 174(6):2086–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39(7):2073–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD (2005) An epoxide hydrolase inhibitor, 12- (3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 46(6):842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar P, Narayanan J, Harder DR (2011) Differential effect of amyloid β on the cytochrome P450 epoxygenase activity in rat brain. Neuroscience 194:241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gross GJ, Gauthier KM, Moore J, Campbell WB, Falck JR, Nithipatikom K (2009) Evidence for role of epoxyeicosatrienoic acids in mediating ischemic preconditioning and postconditioning in dog. Am J Physiol Heart Circ Physiol 297(1):H47–H52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M (2008) Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 294(2):H724–H735

    Article  CAS  PubMed  Google Scholar 

  14. Lin FS, Shen SQ, Chen ZB, Yan RC (2012) 17β-estradiol attenuates reduced-size hepatic ischemia/reperfusion injury by inhibition apoptosis via mitochondrial pathway in rats Shock 37(2):183–190

    Article  CAS  PubMed  Google Scholar 

  15. Wang HX, Zhang DM, Zeng XJ, Mu J, Yang H, Lu LQ, Zhang LK (2012) Upregulation of cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid inhibits apoptosis in neonatal rat cardiomyocytes by a caspase-dependent pathway. Cytokine 60(2):360–368

    Article  CAS  PubMed  Google Scholar 

  16. Ma J, Zhang L, Li S, Liu S, Ma C, Li W, Falck JR, Manthati VL, Reddy DS, Medhora M, Jacobs ER, Zhu D (2010) 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway. Exp Cell Res 316(14):2340–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Wan Y, Fang Y, Yao E, Xu S, Ning Q, Zhang G, Wang W, Huang X, Xie M (2016) Epoxyeicosanoid signaling provides multi-target protective effects on neurovascular unit in rats after focal ischemia. J Mol Neurosci 58(2):254–265

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Chen M, Yuan L, Xiang Y, Zheng R, Zhu S (2014) 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis. Biochem Biophys Res Commun 450(1):604–609

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Lin Y, Tang X, Zhang P, Liu B, Liu Y, Miao F (2016) Helix B surface peptide protects cardiomyocytes against hypoxia/reoxygenation-induced apoptosis through mitochondrial pathways. J Cardiovasc Pharmacol 67(5):418–426

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko Y, Shojo H, Burns J, Staples M, Tajiri N, Borlongan CV (2014) DJ-1 ameliorates ischemic cell death in vitro possibly via mitochondrial pathway. Neurobiol Dis 62:56–61

    Article  CAS  PubMed  Google Scholar 

  21. Peixoto PM, Lue JK, Ryu SY, Wroble BN, Sible JC, Kinnally KW (2011) Mitochondrial apoptosis-induced channel (MAC) function triggers a Bax/Bak-dependent bystander effect. Am J Pathol 178(1):48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cabon L, Galán-Malo P, Bouharrour A, Delavallée L, Brunelle-Navas MN, Lorenzo HK, Gross A, Susin SA (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19(2):245–256

    Article  CAS  PubMed  Google Scholar 

  23. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    Article  CAS  PubMed  Google Scholar 

  24. Nair V, Pathi S, Jutooru, Sreevalsan S, Basha R, Abdelrahim M, Samudio I, Safe S (2013) Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors. Carcinogenesis 34(12):2870–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly ML, Sadikot RT (2014) TREM-1 mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem 289(21):15118–15129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi GX, Cai W, Andres DA (2012) Rit-mediated stress resistance involves a p38-mitogen- and stress-activated protein kinase 1 (MSK1)-dependent cAMP response element-binding protein (CREB) activation cascade. J Biol Chem 287(47):39859–39868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacerdoti D, Pesce P, Di Pascoli M, Bolognesi M (2016) EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 125:65–79

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ (2016) Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2016.09.002

    Google Scholar 

  29. Dou MY, Wu H, Zhu HJ, Jin SY, Zhang Y, He SF (2016) Remifentanil preconditioning protects rat cardiomyocytes against hypoxia-reoxygenation injury via δ-opioid receptor mediated activation of PI3K/Akt and ERK pathways. Eur J Pharmacol 789:395–401

    Article  CAS  PubMed  Google Scholar 

  30. Zhang P, Guo ZF, Xu YM, Li YS, Song JG (2016) N-Butylphthalide (NBP) ameliorated cerebral ischemia reperfusion-induced brain injury via HGF-regulated TLR4/NF-κB signaling pathway. Biomed Pharmacother 83:658–666

    Article  CAS  PubMed  Google Scholar 

  31. Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S (2016) 14,15-Epoxyeicosatrienoic acid promotes production of BDNF from astrocytes and exerts neuroprotective effects during ischemic injury. Neuropathol Appl Neurobiol 42(7):607–620

    Article  CAS  PubMed  Google Scholar 

  32. Qiu B, Hu S, Liu L, Chen M, Wang L, Zeng X, Zhu S (2013) CART attenuates endoplasmic reticulum stress response induced by cerebral ischemia and reperfusion through upregulating BDNF synthesis and secretion. Biochem Biophys Res Commun 436(4):655–659

    Article  CAS  PubMed  Google Scholar 

  33. Sun L, Zhao M, Yu XJ, Wang H, He X, Liu JK, Zang WJ (2013) Cardioprotection by acetylcholine: a novel mechanism via mitochondrial biogenesis and function involving the PGC-1α pathway. J Cell Physiol 228(6):1238–1248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Henan Province Research Program of Basic and Advanced Technology (162300410102), Henan Postdoctoral Foundation (2015051) and Henan Province Foundation for University Key Teacher (15A180031, 16A330001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lai Wang or Jie-Xin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, HX., Li, RP., Li, YG. et al. 14,15-EET Suppresses Neuronal Apoptosis in Ischemia–Reperfusion Through the Mitochondrial Pathway. Neurochem Res 42, 2841–2849 (2017). https://doi.org/10.1007/s11064-017-2297-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2297-6

Keywords

Navigation