Skip to main content

Advertisement

Log in

Downregulation of Oxytocin Receptor Decreases the Length of Projections Stimulated by Retinoic Acid in the U-87MG Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxytocin is a neuropeptide widely expressed in the brain. Oxytocin plays a role in both proliferation and differentiation of various cells. Previous studies have suggested that oxytocin could affect the morphology of neuronal cells, therefore the objective of the present study was to test whether (1) oxytocin receptor stimulation/inhibition by specific ligands may change cell morphology and gene expression of selected cytoskeletal proteins (2) oxytocin receptor silencing/knockdown may decrease the length of cell projections (3) oxytocin receptor knockdown may affect human glioblastoma U-87MG cell survival. We confirmed the stimulatory effect of retinoic acid (10 µM) and oxytocin (1 µM) on projection growth. The combination of retinoic acid (10 µM) and oxytocin receptor antagonist (L-371,257, 1 µM) decreased projections length. Contrary to our assumptions, oxytocin receptor silencing did not prevent stimulation of length of projection by retinoic acid. Retinoic acid’s and oxytocin’s stimulation of projections length was significantly blunted in U-87MG cells with oxytocin receptor knockdown. Cell viability was significantly decreased in U-87MG cells with oxytocin receptor knockdown. Significantly higher levels of mRNA for cytoskeletal proteins drebrin and vimentin were observed in response to oxytocin incubation for 48 h. The data obtained in the present study clearly show that oxytocin induces formation and elongation of cell projections in astrocyte-like U-87MG cells. The effect is mediated by oxytocin receptors and it is accompanied by an increase in gene expression of drebrin and vimentin. Thus, oxytocin receptor signaling, particularly in the glial cells, may play an important role in native cell life, differentiation processes, and tumor progression, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–810

    Article  CAS  PubMed  Google Scholar 

  2. Deumens R, Koopmans GC, Den Bakker CG, Maquet V, Blacher S, Honig WM, Jérôme R, Pirard JP, Steinbusch HW, Joosten EA (2004) Alignment of glial cells stimulates directional neurite growth of CNS neurons in vitro. Neuroscience 125:591–604

    Article  CAS  PubMed  Google Scholar 

  3. Khankan RR, Wanner IB, Phelps PE (2015) Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures. Exp Neurol 269:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaszberenyi M, Rick FG, Popovics P, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Schally AV (2014) Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists. Proc Natl Acad Sci USA 111:781–786

    Article  CAS  PubMed  Google Scholar 

  5. Oikonomou E, Buchfelder M, Adams EF (2008) Cholecystokinin (CCK) and CCK receptor expression by human gliomas: evidence for an autocrine/paracrine stimulatory loop. Neuropeptides 42:255–265

    Article  CAS  PubMed  Google Scholar 

  6. Guo QH, Yang HJ, Wang SD (2015) Olanzapine inhibits the proliferation and induces the differentiation of glioma stem-like cells through modulating the Wnt signaling pathway in vitro. Eur Rev Med Pharmacol Sci 19:2406–2415

    PubMed  Google Scholar 

  7. Das A, Banik NL, Ray SK (2009) Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem Res 34:87–101

    Article  CAS  PubMed  Google Scholar 

  8. Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, Guerrero-Cazares H, Quinones-Hinojosa A, Laterra J, Xia S (2011) Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 30:3454–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanaka S, Nishihara T, Nagashima T, Kawai K, Nakai S, Adachi M (1997) Differentiation inducing effects of vesnarinone on human glioma cells. J Clin Neurosci 4:57–62

    Article  CAS  PubMed  Google Scholar 

  10. Lestanova Z, Bacova Z, Kiss A, Havranek T, Strbak V, Bakos J (2016) OXT Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth. J Mol Neurosci 59(2):184–192

    Article  CAS  PubMed  Google Scholar 

  11. Cassoni P, Sapino A, Stella A, Fortunati N, Bussolati G (1998) Presence and significance of OXT receptors in human neuroblastomas and glial tumors. Int J Cancer 77:695–700

    Article  CAS  PubMed  Google Scholar 

  12. Mittaud P, Labourdette G, Zingg H, Guenot-Di Scala D (2002) Neurons modulate OXT receptor expression in rat cultured astrocytes: involvement of TGF-beta and membrane components. Glia 37:169–177

    Article  PubMed  Google Scholar 

  13. Bakos J, Strbak V, Ratulovska N, Bacova Z (2012) Effect of oxytocin on neuroblastoma cell viability and growth. Cell Mol Neurobiol 32:891–896

    Article  CAS  PubMed  Google Scholar 

  14. Cassoni P, Marrocco T, Bussolati B et al (2006) Oxytocin induces proliferation and migration in immortalized human dermal microvascular endothelial cells and human breast tumor-derived endothelial cells. Mol Cancer Res 4(6):351–359

    Article  CAS  PubMed  Google Scholar 

  15. Choi SA, Hwang SK, Wang KC, Cho BK, Phi JH, Lee JY, Jung HW, Lee DH, Kim SK (2011) Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol 13:61–69

    Article  CAS  PubMed  Google Scholar 

  16. Ahn HH, Lee IW, Lee HB, Kim MS (2014) Cellular behavior of human adipose-derived stem cells on wettable gradient polyethylene surfaces. Int J Mol Sci 15:2075–8206

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vasavda N, Eichholtz T, Takahashi A, Affleck K, Matthews JG, Barnes PJ, Adcock IM (2006) Expression of nonmuscle cofilin-1 and steroid responsiveness in severe asthma. J Allergy Clin Immunol 118:1090–1096

    Article  CAS  PubMed  Google Scholar 

  18. Vaskova M, Kovac M, Volna P, Angelisova P, Mejstrikova E, Zuna J, Brdicka T, Hrusak O (2011) High expression of cytoskeletal protein drebrin in TEL/AML1pos B-cell precursor acute lymphoblastic leukemia identified by a novel monoclonal antibody. Leuk Res 35:1111–1113

    Article  CAS  PubMed  Google Scholar 

  19. Melino M, Gadd VL, Walker GV, Skoien R, Barrie HD, Jothimani D, Horsfall L, Jones A, Sweet MJ, Thomas GP, Clouston AD, Jonsson JR, Powell EE (2012) Macrophage secretory products induce an inflammatory phenotype in hepatocytes. World J Gastroenterol 18:1732–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  21. Kornyei Z, Gócza E, Rühl R, Orsolits B, Vörös E, Szabó B, Vágovits B, Madarász E (2007) Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J 21:2496–2509

    Article  CAS  PubMed  Google Scholar 

  22. Janesick A, Wu SC, Blumberg B (2015) Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 72:1559–1576

    Article  CAS  PubMed  Google Scholar 

  23. Masmoudi-Kouki O, Gandolfo P, Castel H, Leprince J, Fournier A, Dejda A, Vaudry H, Tonon MC (2007) Role of PACAP and VIP in astroglial functions. Peptides 28:1753–1760

    Article  CAS  PubMed  Google Scholar 

  24. Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY (2013) Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 40:5315–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lestanova Bacova Z, Bakos J (2016) Mechanisms involved in the regulation of neuropeptide-mediated neurite outgrowth: a minireview. Endocr Regul 50:71–81

    Google Scholar 

  26. Satpute RM, Kashyap RS, Kainthla RP, Purohit HJ, Taori GM, Daginawala HF (2006) Secretory factors of human neuroblastoma (IMR-32) and human glioblastoma (U87MG) cell lines induce neurite outgrowths in PC12 cells. Indian J Exp Biol 44:367–370

    PubMed  Google Scholar 

  27. Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M (2016) Binding to and inhibition of insulin-regulated aminopeptidase by macrocyclic disulfides enhances spine density. Mol Pharmacol 89:413–424

    Article  CAS  PubMed  Google Scholar 

  28. Fuente-Martín E, García-Cáceres C, Granado M, de Ceballos ML, Sánchez-Garrido MÁ, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizón P, Díaz F, Argente J, Horvath TL, Chowen JA (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900–3913

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM 2nd, Goldman JE (2014) Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J Neurosci 34:2285–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, Rupprecht R (2016) Fluoxetine Requires the Endfeet Protein Aquaporin-4 to Enhance Plasticity of Astrocyte Processes. Front Cell Neurosci 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lechuga-Sancho AM, Arroba AI, Frago LM, García-Cáceres C, de Célix AD, Argente J, Chowen JA (2006) Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology 147:5314–5324

    Article  CAS  PubMed  Google Scholar 

  33. Cao F, Yin A, Wen G, Sheikh AM, Tauqeer Z, Malik M, Nagori A, Schirripa M, Schirripa F, Merz G, Brown WT, Li X (2012) Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects. J Neuroinflammation 9:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kranz TM, Kopp M, Waltes R, Sachse M, Duketis E, Jarczok TA, Degenhardt F, Görgen K, Meyer J, Freitag CM, Chiocchetti AG (2016) Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res. 9:1036–1045

    Article  PubMed  Google Scholar 

  35. Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174

    Article  CAS  PubMed  Google Scholar 

  36. Asada H, Uyemura K, Shirao T (1994) Actin-binding protein, drebrin, accumulates in submembranous regions in parallel with neuronal differentiation. J Neurosci Res 38:149–159

    Article  CAS  PubMed  Google Scholar 

  37. Inberg A, Bogoch Y, Bledi Y, Linial M (2007) Cellular processes underlying maturation of P19 neurons: changes in protein folding regimen and cytoskeleton organization. Proteomics 7:910–920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the project 2/0119/15 of the Grant Agency of Ministry of Education and Slovak Academy of Sciences (VEGA), the project APVV-0253-10, APVV-15- 0205 of the Slovak Research and Development Agency and the President’s Faculty Research and Development Grant from Nova Southeastern University: PFRDG 335398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestanova, Z., Puerta, F., Alanazi, M. et al. Downregulation of Oxytocin Receptor Decreases the Length of Projections Stimulated by Retinoic Acid in the U-87MG Cells. Neurochem Res 42, 1006–1014 (2017). https://doi.org/10.1007/s11064-016-2133-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2133-4

Keywords

Navigation