Skip to main content

Advertisement

Log in

Upregulation of PLZF is Associated with Neuronal Injury in Lipopolysaccharide-Induced Neuroinflammation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Promyelocytic leukemia zinc finger (PLZF) protein has been identified as a tumor suppressor in a variety of cancers, including leukemia, malignant mesothelioma, malignant melanoma, pancreatic cancer and prostate cancer. Studies have demonstrated that altered expression of PLZF affected its biological functions associated with tumorigenesis, such as proliferation, cell cycle, and apoptosis. However, information regarding its regulation and possible function in the central nervous system diseases is still limited. In this study, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventricle injection in adult rats and detected increased expression of PLZF in the brain cortex. Immunofluorescence assay indicated that PLZF was significantly increased in neurons 3 day after LPS injection, but not in astrocytes and microglia. Moreover, there was a concomitant upregulation of active caspase-3, cyclin D1, and CDK4 in vivo and vitro studies. In addition, the expression of these proteins in cortical primary neurons was inhibited after knocking down PLZF by siRNA. Collectively, all these results suggested that the upregulation of PLZF might be involved in neuronal apoptotic-like injury in neuroinflammation after LPS injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33(1):7–22. doi:10.1002/embj.201386609

    Article  CAS  PubMed  Google Scholar 

  2. Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13 (7):533–548. doi:10.1038/nrd4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. doi:10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  4. Varley J, Brooks DJ, Edison P (2015) Imaging neuroinflammation in Alzheimer’s disease and other dementias: recent advances and future directions. Alzheimer’s Dement 11 (9):1110–1120. doi:10.1016/j.jalz.2014.08.105

    Article  Google Scholar 

  5. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87. doi:10.1016/j.tins.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  6. D’Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17(7):1104–1114. doi:10.1038/cdd.2009.180

    Article  PubMed  Google Scholar 

  7. Zebell SG, Dong X (2015) Cell-Cycle Regulators and Cell Death in Immunity. Cell Host Microbe 18 (4):402–407. doi:10.1016/j.chom.2015.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallas M, Camins A (2012) Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22(3):195–207. doi:10.1007/s12640-011-9277-4

    Article  PubMed  Google Scholar 

  9. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15 (1):49–63. doi:10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  10. D’Amelio M, Sheng M, Cecconi F (2012) Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 35(11):700–709. doi:10.1016/j.tins.2012.06.004

    Article  PubMed  Google Scholar 

  11. Arendt T (2012) Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol 46(1):125–135. doi:10.1007/s12035-012-8262-0

    Article  CAS  PubMed  Google Scholar 

  12. Lopes JP, Oliveira CR, Agostinho P (2009) Cell cycle re-entry in Alzheimer’s disease: a major neuropathological characteristic? Curr Alzheimer Res 6 (3):205–212

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Wang L, Guo S, Bao Y, Ma Y, Yan F, Xu K, Xu Z, Jin L, Lu D, Xu J, Wang JC (2013) Hypermethylation reduces expression of tumor-suppressor PLZF and regulates proliferation and apoptosis in non-small-cell lung cancers. FASEB J 27 (10):4194–4203. doi:10.1096/fj.13-229070

    Article  CAS  PubMed  Google Scholar 

  14. Puszyk W, Down T, Grimwade D, Chomienne C, Oakey RJ, Solomon E, Guidez F (2013) The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 32(13):1941–1952. doi:10.1038/emboj.2013.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sadler AJ, Rossello FJ, Yu L, Deane JA, Yuan X, Wang D, Irving AT, Kaparakis-Liaskos M, Gantier MP, Ying H, Yim HC, Hartland EL, Notini AJ, de Boer S, White SJ, Mansell A, Liu JP, Watkins DN, Gerondakis S, Williams BR, Xu D (2015) BTB-ZF transcriptional regulator PLZF modifies chromatin to restrain inflammatory signaling programs. Proc Natl Acad Sci USA 112(5):1535–1540. doi:10.1073/pnas.1409728112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, Zhang H, Yin S, Zhang Y, Yang W, Zheng W, Wang L, Wang Z, Bukhari I, Cooke HJ, Iqbal F, Shi Q (2014) Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice. Sci Rep 4:7062. doi:10.1038/srep07062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doulatov S, Notta F, Rice KL, Howell L, Zelent A, Licht JD, Dick JE (2009) PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev 23 (17):2076–2087. doi:10.1101/gad.1788109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD (1998) The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 18(9):5533–5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, Licht JD (2003) Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 23(24):9375–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerart S, Siberil S, Martin E, Lenoir C, Aguilar C, Picard C, Lantz O, Fischer A, Latour S (2013) Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 121(4):614–623. doi:10.1182/blood-2012-09-456095

    Article  CAS  PubMed  Google Scholar 

  21. Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17(13):4341–4354. doi:10.1158/1078-0432.CCR-10-3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheung M, Pei J, Pei Y, Jhanwar SC, Pass HI, Testa JR (2010) The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival. Oncogene 29(11):1633–1640. doi:10.1038/onc.2009.455

    Article  CAS  PubMed  Google Scholar 

  23. Sobieszczuk DF, Poliakov A, Xu Q, Wilkinson DG (2010) A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev 24 (2):206–218. doi:10.1101/gad.554510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seidel K, Kirsch S, Lucht K, Zaade D, Reinemund J, Schmitz J, Klare S, Li Y, Schefe JH, Schmerbach K, Goldin-Lang P, Zollmann FS, Thone-Reineke C, Unger T, Funke-Kaiser H (2011) The promyelocytic leukemia zinc finger (PLZF) protein exerts neuroprotective effects in neuronal cells and is dysregulated in experimental stroke. Brain Pathol 21(1):31–43. doi:10.1111/j.1750-3639.2010.00427.x

    Article  CAS  PubMed  Google Scholar 

  25. Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9(2):116–126. doi:10.1038/tpj.2008.15

    Article  CAS  PubMed  Google Scholar 

  26. Zhang D, Sun L, Zhu H, Wang L, Wu W, Xie J, Gu J (2012) Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 61(7):1021–1035. doi:10.1016/j.neuint.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Li J, Chen C, Yan Y, Jiang S, Wu X, Shao B, Xu J, Kang L, Huang Y, Zhu L, Ji Y, Gao Y (2012) Involvement of CLEC16A in activation of astrocytes after LPS treated. Neurochem Res 37(1):5–14. doi:10.1007/s11064-011-0581-4

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27(2):361–371. doi:10.1089/neu.2008.0581

    Article  PubMed  Google Scholar 

  29. Papp EA, Leergaard TB, Calabrese E, Johnson GA, Bjaalie JG (2014) Waxholm Space atlas of the Sprague Dawley rat brain. NeuroImage 97:374–386. doi:10.1016/j.neuroimage.2014.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, Shen A (2012) SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell 23(23):4506–4514. doi:10.1091/mbc.E12-05-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koep LJ, Konigsmark BW, Sperber EE (1970) Cellular changes in the human supraoptic and paraventricular hypothalamic nuclei in dehydration. J Neuropathol Exp Neurol 29(2):254–265

    Article  CAS  PubMed  Google Scholar 

  32. Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16(3):221–237. doi:10.1007/s12640-009-9050-0

    Article  PubMed  Google Scholar 

  33. Rao HV, Thirumangalakudi L, Desmond P, Grammas P (2007) Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem 101(2):498–505. doi:10.1111/j.1471-4159.2006.04389.x

    Article  CAS  PubMed  Google Scholar 

  34. Feng Y, Xue H, Zhu J, Yang L, Zhang F, Qian R, Lin W, Wang Y (2016) ESE1 is Associated with Neuronal Apoptosis in Lipopolysaccharide Induced Neuroinflammation. Neurochemical research. doi:10.1007/s11064-016-1990-1

    Google Scholar 

  35. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4):867–883. doi:10.1016/j.neuroscience.2007.02.055

    Article  CAS  PubMed  Google Scholar 

  36. Nimmervoll B, White R, Yang JW, An S, Henn C, Sun JJ, Luhmann HJ (2013) LPS-induced microglial secretion of TNFalpha increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb Cortex 23(7):1742–1755. doi:10.1093/cercor/bhs156

    Article  PubMed  Google Scholar 

  37. Liraz-Zaltsman S, Alexandrovich AG, Trembovler V, Fishbein I, Yaka R, Shohami E, Biegon A (2011) Regional sensitivity to neuroinflammation: in vivo and in vitro studies. Synapse 65(7):634–642. doi:10.1002/syn.20889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kranenburg O, van der Eb AJ, Zantema A (1996) Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J 15(1):46–54

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Giardina SF, Cheung NS, Reid MT, Beart PM (1998) Kainate-induced apoptosis in cultured murine cerebellar granule cells elevates expression of the cell cycle gene cyclin D1. J Neurochem 71(3):1325–1328

    Article  CAS  PubMed  Google Scholar 

  40. Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG (2005) Sequence and structural analysis of BTB domain proteins. Genome Biol 6(10):R82. doi:10.1186/gb-2005-6-10-r82

    Article  PubMed  PubMed Central  Google Scholar 

  41. Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  42. Kang SI, Choi HW, Kim IY (2008) Redox-mediated modification of PLZF by SUMO-1 and ubiquitin. Biochem Biophys Res Commun 369(4):1209–1214. doi:10.1016/j.bbrc.2008.03.037

    Article  CAS  PubMed  Google Scholar 

  43. Ventii KH, Wilkinson KD (2008) Protein partners of deubiquitinating enzymes. Biochem J 414(2):161–175. doi:10.1042/BJ20080798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang WC, Shih HM (2013) The deubiquitinating enzyme USP37 regulates the oncogenic fusion protein PLZF/RARA stability. Oncogene 32(43):5167–5175. doi:10.1038/onc.2012.537

    Article  CAS  PubMed  Google Scholar 

  45. Rho SB, Park YG, Park K, Lee SH, Lee JH (2006) A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis. FEBS Lett 580 (17):4073–4080. doi:10.1016/j.febslet.2006.06.047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (No. 81270428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Lu.

Ethics declarations

Conflict of Interest

No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Liu, Y., Shen, J. et al. Upregulation of PLZF is Associated with Neuronal Injury in Lipopolysaccharide-Induced Neuroinflammation. Neurochem Res 41, 3063–3073 (2016). https://doi.org/10.1007/s11064-016-2027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2027-5

Keywords

Navigation