Skip to main content

Advertisement

Log in

Modulatory Effects of Mild Carbon Monoxide Exposure in the Developing Mouse Cochlea

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) is well known as a highly toxic poison at high concentrations, yet in physiologic amounts it is an endogenous biological messenger in organs such as the internal ear and brain. In this study we tested the hypothesis that chronic very mild CO exposure at concentrations 25-ppm increases the expression of oxidative stress protecting enzymes within the cellular milieu of the developing inner ear (cochlea) of the normal CD-1 mouse. In addition we tested also the hypothesis that CO can decrease the pre-existing condition of oxidative stress in the mouse model for the human medical condition systemic lupus erythematosus by increasing two protective enzymes heme-oxygenase-1 (HO-1), and superoxide dismutase-2 (SOD-2). CD-1 and MRL/lpr mice were exposed to mild CO concentrations (25 ppm in air) from prenatal only and prenatal followed by early postnatal day 5 to postnatal day 20. The expression of cell markers specific for oxidative stress, and related neural/endothelial markers were investigated at the level of the gene products by immunohistochemistry, proteomics and mRNA expression (quantitative real time-PCR). We found that in the CD-1 and MRL/lpr mouse cochlea SOD-2 and HO-1 were upregulated. In this mouse model of autoimmune disease defense mechanism are attenuated, thus mild CO exposure is beneficial. Several genes (mRNA) and proteins detected by proteomics involved in cellular protection were upregulated in the CO exposed CD-1 mouse and the MRL/lpr mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ghosh S, Gal J, Marczin N (2010) Carbon monoxide: endogenous mediator, potential diagnostic and therapeutic target. Ann Med 42:1–12

    Article  CAS  PubMed  Google Scholar 

  2. Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G (2009) Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 297:1137–1152

    Article  Google Scholar 

  3. Johnson RA, Johnson FK (2000) The effects of carbon monoxide as a neurotransmitter. Curr Opin Neurol 13:709–713

    Article  CAS  PubMed  Google Scholar 

  4. Ryter SW, Otterbein LE (2004) Carbon monoxide in biology and medicine. BioEssays 26:270–280

    Article  CAS  PubMed  Google Scholar 

  5. Snyder SH, Jaffrey SR, Zakhary R (1998) Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Brain Res Rev 26:167–175

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630

    Article  CAS  PubMed  Google Scholar 

  7. Ryter SW, Choi AMK (2009) Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Resp Cell Mol Biol 41:251–260

    Article  CAS  Google Scholar 

  8. Pae HO, Oh GS, Choi BM, Chae SC, Kim YM, Chung KR, Chung HT (2004) Carbon monoxide produced by hemeoxygenase-1 supresses T cell proliferation via inhibition of IL-2 production. J Immunol 172:4744–4751

    Article  CAS  PubMed  Google Scholar 

  9. Foresti R, Bani-Hani MG, Motterlini R (2008) Use of carbon monoxide as a therapeutic agent: promises and challenges. Int Care Med 34:649–658

    Article  CAS  Google Scholar 

  10. Beltran-Parrazal L, Acuna D, Kawakami K, Ngan AS, Kim E, Ngan AA, Edmond J, López IA (2010) Neuroglobin, cytoglobin and transcriptional profiling of hypoxia related genes in the rat cerebellum of after prenatal mild chronic carbon monoxide exposure (25 ppm). Brain Res 1330:56–68

    Article  Google Scholar 

  11. Lopez I, Acuna D, Webber DS, Korsak RA, Edmond J (2003) Mild carbon monoxide exposure diminishes selectively the integrity of the cochlea of the developing rat. J Neurosci Res 74:666–675

    Article  CAS  PubMed  Google Scholar 

  12. Lopez IA, Acuna D, Beltran-Parrazal L, Espinosa-Jeffrey A, Edmond J (2008) Oxidative stress and the deleterious consequences to the rat cochlea after prenatal and pre-postnatal chronic mild exposure to carbon monoxide in air. Neuroscience 151:854–867

    Article  CAS  PubMed  Google Scholar 

  13. Lopez IA, Acuna D, Beltran-Parrazal L, Lopez IE, Cortes M, Amarnani A, Edmond J (2009a) Evidence for oxidative stress in the developing cerebellum of the rat after chronic mild carbon monoxide exposure (0.0025% in air). BMC Neuroscience, 10: 1-18. PMID: PMC2700113

  14. Lopez IA, Acuna D, Shahram Y, Mowlds D, Ngan AM, Rungvivatjarus Sharma Y, Edmond J (2010) Neuroglobin expression in the cochlea of rat pups exposed to chronic very mild carbon monoxide (25 ppm) in air during and after the prenatal period. Brain Res 1327:56–68

    Article  CAS  PubMed  Google Scholar 

  15. Stockard-Sullivan JE, Korsak RA, Webber DS, Edmond J (2003) Mild carbon monoxide exposure and auditory function in the developing rat. J Neurosci Res 74:644–654

    Article  CAS  PubMed  Google Scholar 

  16. Webber DS, Korsak RA, Sininger LK, Sampogna SL, Edmond J (2003) Mild carbon monoxide exposure impairs the developing auditory system of the rat. J Neurosci Res 74:655–665

    Article  CAS  PubMed  Google Scholar 

  17. Webber DS, López I, Korsak RA, Hirota S, Acuna D, Edmond J (2005) Limiting iron availability confers neuroprotection from chronic mild carbon monoxide exposure in the developing auditory system of the rat. J Neurosci Res 80:620–633

    Article  CAS  PubMed  Google Scholar 

  18. Mansour RB, Lassoued S, Gargouri B, El Gaïd A, Attia H, Fakhfakh F (2008) Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 37:103–108

    Article  PubMed  Google Scholar 

  19. Jaswal S, Mehta HC, Sood AK, Kaur J (2003) Antioxidant status in rheumatoid arthritis and the role of antioxidant therapy. Clin Chim Acta 338:123–129

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Pierangeli SS, Papalardo E, Ansari AS, Khan F (2010) Markers of oxidative and nitrosative stress in systemic lupus erythematosus. Arthritis Rheum 62:2064–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Q, Ye DQ, Chen GP, Zheng Y (2010) Oxidative protein damage and antioxidant status in systemic lupus erythematosus. Clin Exp Dermatol 35:287–294

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Karypis G, Hippen KL, Vegoe AL, Ruiz P, Gilkeson GS, Behrens TW (2006) Genomic view of systemic autoimmunity in MRLlpr mice. Genes Immun 7(1):56–68

    Google Scholar 

  23. Shirai A, Klinman DM (1994) The genetic basis of autoimmune disease in MRL/lpr mice. Int Rev Immunol 11:179–192

    Article  CAS  PubMed  Google Scholar 

  24. Sakic B, Szchtman H, Denburg JA, Gorny G, Kolb B, Whishaw IQ (1998) Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL/lpr mice. J Neuroimmunol 87:162–170

    Article  CAS  PubMed  Google Scholar 

  25. Theofilopoulus AN, Dixon FJ (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37:269–290

    Article  Google Scholar 

  26. Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Genotype effects on the antioxidant enzymes activity and mRNA expression in liver and kidney tissues of autoimmune-prone MRL/Mpj-lpr/lpr mice. Biochim Biophys Acta 14(1213):167–175

    Article  Google Scholar 

  27. Ruckenstein MJ, Mount RJ, Harrison RV (1993) The MRL-lpr/lpr mouse: a potential model of autoimmune inner ear disease. Acta Otolaryngol 113:160–165

    Article  CAS  PubMed  Google Scholar 

  28. Ruckenstein MJ, Milburn M, Hu L (1999) Strial dysfunction in the MRL/Fas mouse. Otolaryngol Head Neck Surg 121:452–456

    Article  CAS  PubMed  Google Scholar 

  29. Ruckenstein MJ, Keithley EM, Bennet T, Powel HC, Baird S, Harris JP (1999) Ultrastructural pathology in the stria vascularis of the MRL-Fas (lpr) mouse. Hear Res 131:22–28

    Article  CAS  PubMed  Google Scholar 

  30. Ruckenstein MJ, Hu L (1999) Antibody deposition in the stria vascularis of the MRL-Fas (lpr) mouse. Hear Res 127:137–142

    Article  CAS  PubMed  Google Scholar 

  31. Ruckenstein MJ (2004) Autoimmune inner ear disease. Curr Opin Otolaryngol Head Neck Surg 12:426–430

    Article  PubMed  Google Scholar 

  32. Trune DR, Kempton JB (2002) Female MRL.MpJ-Faslpr autoimmune mice have greater hearing loss that male. Hear Res 167:170–174

    Article  PubMed  Google Scholar 

  33. Trune DR, Kempton JB, Hefeneider SH, Bennett RM (1997) Inner ear DNA receptors in MRL/lpr autoimmune mice: potential 30 and 70 kDa link between autoimmune disease and hearing loss. Hear Res 105:57–64

    Article  CAS  PubMed  Google Scholar 

  34. Weingber JB (1998) Nitric oxide as an inflammatory mediator in autoimmune MRL/lpr mice. Environ Health Perspect 106:1131–1137

    Google Scholar 

  35. Alexander JJ, Bao L, Jacob A, Kraus DM, Holers VM, Qigg RJ (2003) Administration of the soluble complement inhibitor, Crry-Ig reduces inflammation and aquaporin 4 expression in lupus cerebritis. Biochem Biophys Acta 1639:169–176

    CAS  PubMed  Google Scholar 

  36. Eberhardt C, Amann B, Feuchtinger A, Hauck SM, Deeg CA (2011) Differential expression of inwardly rectifying K channels and aquaporins 4 and 5 in autoimmune uveitis indicated misbalance in Muller glial cell-dependent ion and water homeostasis. Glia 59:697–707

    Article  PubMed  Google Scholar 

  37. Trune DR (2010) Ion homeostasis in the ear: mechanisms, maladies, and management. Current Opin Head Neck Surg 18:413–419

    Article  Google Scholar 

  38. Aarnisalo AA, Green KM, O’Malley J, Makary C, Adams J, Merchant SN, Evans JE (2010) A method for MS differential proteomics analysis of archival formalin-fixed celloidin-embedded human inner ear tissue. Hear Res 270:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Markaryan A, Nelson EG, Helseth LD, Hinojosa R (2010) Proteomic analysis of formalin-fixed celloidin-embedded whole cochlear and laser microdissected spiral ganglion tissues. Acta Otolaryngol 130:984–989

    Article  CAS  PubMed  Google Scholar 

  40. Ebrahimian T, Touyz RM (2008) Thioredoxin in vascular biology: role in hypertension. Antioxid Redox Signal 10:1127–1136

    Article  CAS  PubMed  Google Scholar 

  41. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  CAS  PubMed  Google Scholar 

  42. Nelson PT, Keller JN (2007) RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol 66:461–468

    Article  CAS  PubMed  Google Scholar 

  43. Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS (1999) Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol 277:882–889

    Google Scholar 

  44. Piantadosi CA (2008) Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 45:562–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foresti R, Hammad J, Clark JE, Johnson RA, Mann BE, Friebe A, Green CJ, Motterlini R (2004) Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol 142:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee T, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 19:240–246

    Article  Google Scholar 

  47. Ott MC, Scott JR, Bihair A, Badhwar A, Otterbein LE (2005) Inhalation of carbon monoxide prevents liver injury and inflammation following hind limb ischemia/reperfusion. FASEB J 19:106–108

    CAS  PubMed  Google Scholar 

  48. Chora AA, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP (2007) Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflamation. J Clin Invest 117:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrandiz ML, Macias N, Garcia-Arnandis I, Terencio MC, Motterlini R, Devesa I, Joosten L, van den Berg WB, Alcaraz MJ (2008) Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 67:1211–1217

    Article  CAS  PubMed  Google Scholar 

  50. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9:728–743

    Article  CAS  PubMed  Google Scholar 

  51. Takagi T, Naito Y, Uchiyama Suzuki T, Hirata I, Mizushima K, Tsuboi H, Hayashi N, Handa O, Ishikawa T, Yagi N, Kokura N, Ichikawa H, Yoshikawa T (2010) Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. doi:10.1007/s10620-010-1484

    Google Scholar 

  52. Urquhart P, Rosignole G, Cooper D, Motterlini R, Perretti M (2007) Carbon monoxide-releasing molecules modulate leukocyte endothelial interactions under flow. J Pharmacol Exp Therapeutics 321:656–662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Ram Raj Singh from the Division of Rheumatology for provide us the MRL/LPR mouse breeds. To Applied Biomics, Hayward, CA, for performing the proteomic analysis of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, I.A., Acuna, D. & Edmond, J. Modulatory Effects of Mild Carbon Monoxide Exposure in the Developing Mouse Cochlea. Neurochem Res 42, 151–165 (2017). https://doi.org/10.1007/s11064-016-1882-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1882-4

Keywords

Navigation