Skip to main content
Log in

Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is a body of evidence suggesting that mitochondrial dysfunction is involved in bipolar disorder (BD) pathogenesis. Studies suggest that abnormalities in circadian cycles are involved in the pathophysiology of affective disorders; paradoxical sleep deprivation (PSD) induces hyperlocomotion in mice. Thus, the present study aims to investigate the effects of lithium (Li) and valproate (VPA) in an animal model of mania induced by PSD for 96 h. PSD increased exploratory activity, and mood stabilizers prevented PSD-induced behavioral effects. PSD also induced a significant decrease in the activity of complex II–III in hippocampus and striatum; complex IV activity was decreased in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex. Additionally, VPA administration was able to prevent PSD-induced inhibition of complex II–III and IV activities in prefrontal cortex, cerebellum, hippocampus, striatum and cerebral cortex, whereas Li administration prevented PSD-induced inhibition only in prefrontal cortex and hippocampus. Regarding the enzymes of Krebs cycle, only citrate synthase activity was increased by PSD in prefrontal cortex. We also found a similar effect in creatine kinase, an important enzyme that acts in the buffering of ATP levels in brain; its activity was increased in prefrontal cortex, hippocampus and cerebral cortex. These results are consistent with the connection of mitochondrial dysfunction and hyperactivity in BD and suggest that the present model fulfills adequate face, construct and predictive validity as an animal model of mania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tufik S, Andersen ML, Bittencourt LR, Mello MT (2009) Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research. Anais da Academia Brasileira de Ciências 81:521–538

    Article  PubMed  Google Scholar 

  2. Koban M, Swinson KL (2005) Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue. Am J Physiol Endocrinol Metab 289:68–74

    Article  Google Scholar 

  3. Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184

    Article  CAS  PubMed  Google Scholar 

  4. Harvey AG (2008) Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation. Am J Psychiatry 165:820–829

    Article  PubMed  Google Scholar 

  5. El-Mallakh RS, El-Masri MA, Huff MO, Li XP, Decker S, Levy RS (2003) Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar Disord 5:362–365

    Article  CAS  PubMed  Google Scholar 

  6. Squassina A, Manchia M, Del Zompo M (2010) Pharmacogenomics of mood stabilizers in the treatment of bipolar disorder. Hum Genomics Proteomics 2010:159761

    Article  PubMed Central  PubMed  Google Scholar 

  7. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA (2009) Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 65:489–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, Froimowitz MP, Hassinger LC, Menesale EB, Sargent LW, Logan DJ, Carpenter AE, Cohen BM (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177:575–585

    Article  PubMed Central  PubMed  Google Scholar 

  9. Caetano SC, Olvera RL, Hatch JP, Sanches M, Chen HH, Nicoletti M, Stanley JA, Fonseca M, Hunter K, Lafer B, Pliszka SR, Soares JC (2011) Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a 1H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry 50:85–94

    Article  PubMed  Google Scholar 

  10. Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G (2012) Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy and neurotrophic signaling. J Psychiatr Res 46:95–104

    Article  CAS  PubMed  Google Scholar 

  11. Corrêa C, Amboni G, Assis LC, Martins MR, Kapczinski F, Streck EL, Quevedo J (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891

    Article  PubMed  Google Scholar 

  12. Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429

    Article  CAS  PubMed  Google Scholar 

  13. Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44:903–909

    Article  PubMed  Google Scholar 

  14. Feier G, Valvassori SS, Varela RB, Resende WR, Bavaresco DV, Morais MO, Scaini G, Andersen ML, Streck EL, Quevedo J (2013) Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 103:589–596

    Article  CAS  PubMed  Google Scholar 

  15. Rezin GT, Furlanetto CB, Scaini G, Valvassori SS, Gonçalves CL, Ferreira GK, Jeremias IC, Resende WR, Cardoso MR, Varela RB, Quevedo J, Streck EL (2014) Fenproporex increases locomotor activity and alters energy metabolism, and mood stabilizers reverse these changes: a proposal for a new animal model of mania. Mol Neurobiol 49(2):877–892

    Article  CAS  PubMed  Google Scholar 

  16. Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004:45–51

    Article  CAS  PubMed  Google Scholar 

  17. Ruiz FS, Andersen ML, Zager A, Martins RC, Tufik S (2007) Sleep deprivation reduces the lymphocyte count in a non-obese mouse model of type 1 diabetes mellitus. Braz J Med Biol Res 40:633–637

    Article  CAS  PubMed  Google Scholar 

  18. Tufik S, Lindsey CJ, Carlini EA (1978) Does REM sleep deprivation induce a supersensitivity of dopaminergic receptors in the rat brain? Pharmacology 16:98–105

    Article  CAS  PubMed  Google Scholar 

  19. Zager A, Andersen ML, Lima MM, Reksidler AB, Machado RB, Tufik S (2009) Modulation of sickness behavior by sleep: the role of neurochemical and neuroinflammatory pathways in mice. Eur Neuropsychopharmacol 19:589–602

    Article  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  21. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    CAS  Google Scholar 

  22. Kitto GB (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol 13:106–116

    CAS  Google Scholar 

  23. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  CAS  PubMed  Google Scholar 

  24. Cassina A, Radi R (1996) Differential inhibitory Aation of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  PubMed  Google Scholar 

  25. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  26. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  27. Mcewen BS (2006) Sleep deprivation as a neurobiologic and psychologic stressor: allostasis and allostatic load. Metabolism 55:S20–S23

    Article  CAS  PubMed  Google Scholar 

  28. Wehr T (1990) Effects of wakefulness and sleep on depression and mania. In: Mountplaisir J, Godbout R (eds) Sleep and biological rhythms: basic mechanisms and applications to psychiatry. Oxford University Press, Oxford, pp 42–86

    Google Scholar 

  29. Hudson JI, Lipinski JF, Keck PE Jr, Aizley HG, Lukas SE, Rothschild AJ, Waternaux CM, Kupfer DJ (1992) Polysomnographic characteristics of young manic patients. Comparison with unipolar depressed patients and normal control subjects. Arch Gen Psychiatry 49:378–383

    Article  CAS  PubMed  Google Scholar 

  30. Lauer CJ, Schreiber W, Holsboer F, Krieg JC (1995) In quest of identifying vulnerability markers for psychiatric disorders by all-night polysomnography. Arch Gen Psychiatry 52:145–153

    Article  CAS  PubMed  Google Scholar 

  31. Buckley TM, Schatzberg AF (2005) On the interactions of the hypothalamic–pituitary–adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab 90(5):3106–3114

    Article  CAS  PubMed  Google Scholar 

  32. Kapczinski F, Vieta E, Andreazza AC, Frey BN, Gomes FA, Tramontina J, Kauer-Sant’anna M, Grassi-Oliveira R, Post RM (2008) Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci Biobehav Ver 32(4):675–692

    Article  Google Scholar 

  33. Schneck CD, Miklowitz DJ, Calabrese JR, Allen MH, Thomas MR, Wisniewski SR, Miyahara S, Shelton MD, Ketter TA, Goldberg JF, Bowden CL, Sachs GS (2004) Phenomenology of rapid-cycling bipolar disorder: data from the first 500 participants in the systematic treatment enhancement program. Am J Psychiatry 161(10):1902–1908

    Article  PubMed  Google Scholar 

  34. Cervantes P, Gelber S, Kin FN, Nair VN, Schwartz G (2001) Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci 26(5):411–416

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Deshauer D, Grof E, Alda M, Grof P (1999) Patterns of DST positivity in remitted affective disorders. Biol Psychiatry 45:1023–1029

    Article  CAS  PubMed  Google Scholar 

  36. Armani F, Andersen ML, Andreatini R, Frussa-Filho R, Tufik S, Galduróz JC (2012) Successful combined therapy with tamoxifen and lithium in a paradoxical sleep deprivation-induced mania model. CNS Neurosci Ther 18(2):119–125

    Article  CAS  PubMed  Google Scholar 

  37. Baxter LR Jr, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42:441–447

    Article  PubMed  Google Scholar 

  38. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  39. Deicken RF, Weiner MW, Fein G (1995) Decreased temporal lobe phosphomonoesters in bipolar disorder. J Affect Disord 33:195–199

    Article  CAS  PubMed  Google Scholar 

  40. Kato T, Takahashi S, Shioiri T, Inubushi T (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59

    Article  CAS  PubMed  Google Scholar 

  41. Kato T, Inubushi T, Kato N (1998) Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 10:133–147

    Article  CAS  PubMed  Google Scholar 

  42. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  CAS  PubMed  Google Scholar 

  43. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed Central  PubMed  Google Scholar 

  45. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  46. Amar S, Shamir A, Ovadia O, Blanaru M, Reshef A, Kremer I, Rietschel M, Schulze TG, Maier W, Belmaker RH, Ebstein RP, Agam G, Mishmar D (2007) Mitochondrial DNA HV lineage increases the susceptibility to schizophrenia among Israeli Arabs. Schizophr Res 94:354–358

    Article  PubMed  Google Scholar 

  47. Kato T, Stine OC, McMahon FJ, Crowe RR (1997) Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 42:871–875

    Article  CAS  PubMed  Google Scholar 

  48. Kato T, Kunugi H, Nanko S, Kato N (2000) Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 96:182–186

    Article  CAS  PubMed  Google Scholar 

  49. Munakata K, Tanaka M, Mori K, Washizuka S, Yoneda M, Tajima O, Akiyama T, Nanko S, Kunugi H, Tadokoro K, Ozaki N, Inada T, Sakamoto K, Fukunaga T, Iijima Y, Iwata N, Tatsumi M, Yamada K, Yoshikawa T, Kato T (2004) Mitochondrial DNA 3644T→C mutation associated with bipolar disorder. Genomics 84:1041–1050

    Article  CAS  PubMed  Google Scholar 

  50. Munakata K, Iwamoto K, Bundo M, Kato T (2005) Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57:525–532

    Article  CAS  PubMed  Google Scholar 

  51. Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33:2551–2565

    Article  CAS  PubMed  Google Scholar 

  52. Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 4:e4913

    Article  PubMed Central  PubMed  Google Scholar 

  53. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ueno H, Nishigaki Y, Kong QP, Fuku N, Kojima S, Iwata N, Ozaki N, Tanaka M (2009) Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion 9:385–393

    Article  CAS  PubMed  Google Scholar 

  55. Andreazza AC, Andersen ML, Alvarenga TA, de-Oliveira MR, Armani F, Ruiz FS, Giglio L, Moreira JC, Kapczinski F, Tufik S (2010) Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J Psychiatry Res 44:775–780

    Article  Google Scholar 

  56. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  PubMed  Google Scholar 

  57. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Cell Physiol 292:670–686

    Article  Google Scholar 

  58. Scatena R, Bottoni P, Botta G, Martorana GE, Giardina B (2007) The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol 293:C12–C21

    Article  CAS  PubMed  Google Scholar 

  59. Khadrawy YA, Nour NA, Aboul Ezz HS (2011) Effect of oxidative stress induced by paradoxical sleep deprivation on the activities of Na+, K+-ATPase and acetylcholinesterase in the cortex and hippocampus of rat. Transl Res 157:100–107

    Article  CAS  PubMed  Google Scholar 

  60. Nikonova EV, Naidoo N, Zhang L, Romer M, Cater JR, Scharf MT, Galante RJ, Pack AI (2010) Changes in components of energy regulation in mouse cortex with increases in wakefulness. Sleep 33(7):889–900

    PubMed Central  PubMed  Google Scholar 

  61. Cheng JT, Zhang Q, Qiao P (2004) Apoptosis of hippocampus neurons and upexpression of related gene induced by sleep deprivation in rats. Basic Med Sci Clin 24:205–208

    Google Scholar 

  62. Eilan MM, Gilliland M, Bergnmnn BM (1995) Neuronal degeneration in sleep deprivation rats. Sleep 2:21–24

    Google Scholar 

  63. Yang RH, Hu SJ, Wang Y, Zhang WB, Luo WJ, Chen JY (2008) Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res 1230:224–232

    Article  CAS  PubMed  Google Scholar 

  64. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  65. Djuricic B, Masirevic G, Susicm V (1977) Paradoxical sleep deprivation: effects on brain energy metabolism. Arch Int Physiol Biochim 85:213–219

    Article  CAS  PubMed  Google Scholar 

  66. Bessman SP, Carpenter CL (1985) The Creatine–Creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865

    Article  CAS  PubMed  Google Scholar 

  67. Schnyder T, Gross H, Winkler H (1991) Crystallization of mitochondrial creatine kinase. Growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers. J Biol Chem 266:5318–5322

    CAS  PubMed  Google Scholar 

  68. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of Creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphoCreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  70. Shalbuyeva N, Brustovetsky T, Brustovetsky N (2007) Lithium desensitizes brain mitochondria to calcium, antagonizes permeability transition, and diminishes cytochrome C release. J Biol Chem 282:18057–18068

    Article  CAS  PubMed  Google Scholar 

  71. Kazuno AA, Munakata K, Kato N, Kato T (2008) Mitochondrial DNA-dependent effects of valproate on mitochondrial calcium levels in transmitochondrial cybrids. Int J Neuropsychopharmacol 11:71–78

    Article  CAS  PubMed  Google Scholar 

  72. Luis PB, Ruiter JP, Aires CC, Soveral G, de Almeida IT, Duran M, Wanders RJ, Silva MF (2007) Valproic acid metabolites inhibit dihydroplipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation. Biochim Biophys Acta 1767:1126–1133

    Article  CAS  PubMed  Google Scholar 

  73. Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine induced mitochondrial damage. Int J Neuropsychopharmacol 12:805–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Machado-Vieira R, Ibrahim L, Zarate CA Jr (2011) Histone deacetylases and mood disorders: epigenetic programming in gene–environment interactions. CNS Neurosci Ther 17:699–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Chen H, Dzitoyeva S, Manev H (2012) Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690:51–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PV, Kauer-Sant’Anna M, Klamt F, Moreira JC, de Bittencourt Pasquali MA, Fries GR, Quevedo J, Gama CS, Post R (2011) Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 45(2):156–161

    Article  PubMed  Google Scholar 

  77. Pfaffenseller B, Fries GR, Wollenhaupt-Aguiar B, Colpo GD, Stertz L, Panizzutti B, Magalhães PV, Kapczinski F (2013) Neurotrophins, inflammation and oxidative stress as illness activity biomarkers in bipolar disorder. Expert Rev Neurother 13(7):827–842

    Article  CAS  PubMed  Google Scholar 

  78. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA (2009) Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry 65(6):489–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Laboratório de Bioenergética and Laboratório de Neurociências (Brazil) are centers of the National Institute for Translational Medicine (INCT-TM) as well as members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from CNPq (ELS, JQ, MLA and FK), FAPESC (JQ and ELS), Instituto Cérebro e Mente (JQ and ELS) and UNESC (JQ and EST). ELS, FK, MLA, GTR and JQ are CNPq Research Fellows. CLG, GZR WRR and GZR are holders of a CAPES studentship, GS and SSV is holder of a CNPq studentship, and GKF is holder of a FAPESC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streck, E.L., Scaini, G., Jeremias, G.C. et al. Effects of Mood Stabilizers on Brain Energy Metabolism in Mice Submitted to an Animal Model of Mania Induced by Paradoxical Sleep Deprivation. Neurochem Res 40, 1144–1152 (2015). https://doi.org/10.1007/s11064-015-1575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1575-4

Keywords

Navigation