Skip to main content
Log in

The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The operation of a glutamine–glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [14C]acetate or [13C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [13C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide information about glutamine transfer. The present review will give information about glutamine trafficking and the tools used to map it as exemplified by discussions of published work employing brain cell cultures as well as intact animals. It will be documented that considerably more glutamine is transferred from astrocytes to glutamatergic than to GABAergic neurons. However, glutamine does have an important role in GABAergic neurons despite their capability of re-utilizing their neurotransmitter by re-uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GAD:

Glutamate decarboxylase

GLN:

Glutamine

GLU:

Glutamate

GS:

Glutamine synthetase

GVG:

γ-VinylGABA

KG:

α-Ketoglutarate

KO:

Knockout

MRS:

Magnetic resonance spectroscopy

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

TCA:

Tricarboxylic acid

WT:

Wild type

References

  1. Lajtha A, Berl S, Waelsch H (1959) Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J Neurochem 3(4):322–332

    Article  CAS  PubMed  Google Scholar 

  2. Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine glutamate and GABA in the central nervous system Alan R. Liss Inc, New York, pp 205–217

    Google Scholar 

  3. Berl S, Clarke DD (1975) Introduction. In: Berl S, Clarke DD, Schneider D (eds) Metabolic compartmentation and neurotransmission: relation to brain structure and function. Plenum Press, New York, pp xiii–xvii

    Chapter  Google Scholar 

  4. Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism—VI: cerebral compartments of glutamic acid metabolism. J Neurochem 7(3):186–197. doi:10.1111/j.1471-4159.1961.tb13503.x

    Article  CAS  Google Scholar 

  5. van den Berg CJ, Garfinkel D (1971) A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123(2):211–218

    PubMed  Google Scholar 

  6. Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116(3):445–461

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52(1):6–15

    CAS  PubMed  Google Scholar 

  8. Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45(3):233–238

    Article  CAS  PubMed  Google Scholar 

  9. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310. doi:10.1016/0006-8993(79)90071-4

    Article  CAS  PubMed  Google Scholar 

  10. Reubi JC, van den Berg C, Cuenod M (1978) Glutamine as precursor for the GABA and glutamate trasmitter pools. Neurosci Lett 10(1–2):171–174

    Article  CAS  PubMed  Google Scholar 

  11. Sonnewald U, Westergaard N, Schousboe A, Svendsen JS, Unsgard G, Petersen SB (1993) Direct demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons. Neurochem Int 22(1):19–29

    Article  CAS  PubMed  Google Scholar 

  12. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol 4:102. doi:10.3389/fendo.2013.00102

    Article  Google Scholar 

  13. Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2(2):87–95

    Article  CAS  PubMed  Google Scholar 

  14. Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724

    Article  CAS  PubMed  Google Scholar 

  15. Waagepetersen HS, Qu H, Schousboe A, Sonnewald U (2001) Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 66(5):763–770. doi:10.1002/jnr.10061

    Article  CAS  PubMed  Google Scholar 

  16. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487

    Article  CAS  PubMed  Google Scholar 

  17. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367

    Article  CAS  PubMed  Google Scholar 

  18. Cesar M, Hamprecht B (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64(5):2312–2318

    Article  CAS  PubMed  Google Scholar 

  19. Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17(2):160–168

    Article  CAS  PubMed  Google Scholar 

  20. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation—Where do all the carbons go? J Neurochem. doi:10.1111/jnc.12812

    Google Scholar 

  21. McKenna MC, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy Metabolism of the Brain. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry, 8th edn. Elsevier Inc, London, pp 200–231

    Chapter  Google Scholar 

  22. Schousboe A (2012) Studies of brain metabolism: a historical perspective. Advances in neurobiology, vol 4. Springer Science, NY, pp 909–920

    Google Scholar 

  23. Minchin MC, Beart PM (1975) Compartmentation of amino acid metabolism in the rat posterior pituitary. J Neurochem 24(5):881–884

    Article  CAS  PubMed  Google Scholar 

  24. Muir D, Berl S, Clarke DD (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 380(2):336–340

    Article  CAS  PubMed  Google Scholar 

  25. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18(14):5225–5233

    CAS  PubMed  Google Scholar 

  26. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Broer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37(11):2541–2553. doi:10.1007/s11064-012-0847-5

    Article  CAS  PubMed  Google Scholar 

  27. Fonnum F, Johnsen A, Hassel B (1997) Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 21(1):106–113. doi:10.1002/(SICI)1098-1136(199709)21:1<106:AID-GLIA12>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  28. Hassel B, Westergaard N, Schousboe A, Fonnum F (1995) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem Res 20(4):413–420

    Article  CAS  PubMed  Google Scholar 

  29. Clarke DD (1991) Fluoroacetate and fluorocitrate: mechanism of action. Neurochem Res 16(9):1055–1058

    Article  CAS  PubMed  Google Scholar 

  30. Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48(5):1377–1385

    Article  CAS  PubMed  Google Scholar 

  31. Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 17(11):1230–1238

    Article  CAS  PubMed  Google Scholar 

  32. Hassel B, Bachelard H, Jones P, Fonnum F, Sonnewald U (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate. J Cereb Blood Flow Metab 17(11):1230–1238. doi:10.1097/00004647-199711000-00012

    Article  CAS  PubMed  Google Scholar 

  33. Ottersen OP, Storm-Mathisen J (1985) Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea-pig and Senegalese baboon (Papio papio), with a note on the distribution of gamma-aminobutyrate. Neuroscience 16(3):589–606

    Article  CAS  PubMed  Google Scholar 

  34. Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46(3):519–534. doi:10.1016/0306-4522(92)90141-N

    Article  CAS  PubMed  Google Scholar 

  35. Walls AB, Eyjolfsson EM, Smeland OB, Nilsen LH, Schousboe I, Schousboe A, Sonnewald U, Waagepetersen HS (2010) Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 31(2):494–503. doi:10.1038/jcbfm.2010.115

    Article  PubMed Central  PubMed  Google Scholar 

  36. Meisingset TW, Risa O, Brenner M, Messing A, Sonnewald U (2010) Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease. Glia 58(10):1228–1234. doi:10.1002/glia.21003

    PubMed Central  PubMed  Google Scholar 

  37. Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R (1999) The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A 96(22):12911–12916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Choi SY, Morales B, Lee HK, Kirkwood A (2002) Absence of long-term depression in the visual cortex of glutamic acid decarboxylase-65 knock-out mice. J Neurosci 22(13):5271–5276

    CAS  PubMed  Google Scholar 

  39. Rowley NM, Madsen KK, Schousboe A, Steve White H (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4):546–558. doi:10.1016/j.neuint.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  40. Schousboe A, Waagepetersen HS (2004) Role of astrocytes in homeostasis of glutamate and GABA during physiological and pathophysiological conditions. Adv Mol Cell Biol 31:461–474

    Article  CAS  Google Scholar 

  41. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  42. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102(15):5588–5593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neuroscience 32(15):5017–5023. doi:10.1523/JNEUROSCI.5384-11.2012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The writing of this review was supported by a Grant to Ph.D. Anne B. Walls by the Danish Medical Research Council [Grant number 0602-01660B].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sonnewald.

Additional information

Special Issue: In honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walls, A.B., Waagepetersen, H.S., Bak, L.K. et al. The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochem Res 40, 402–409 (2015). https://doi.org/10.1007/s11064-014-1473-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1473-1

Keywords

Navigation