Skip to main content

Advertisement

Log in

Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH +) and in energy consumption rates in astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Neuronal excitation leads to an increase of the extracellular K+ concentration ([K+]o) in brain. This increase has at least two energy-consuming consequences: (1) a depolarization-mediated change in intracellular pH (pHi) in astrocytes due to depolarization-mediated increased activity of the acid-extruding Na+/bicarbonate transporter NBCe1 (driven by secondary active transport, supported by ion gradients established by the Na+, K+-ATPase); and (2) activation of cellular reuptake of K+ mediated by the Na+, K+-ATPase in both neurons and astrocytes. Astrocytic, but not neuronal increase in NBCe1 activity and pHi is also seen after chronic treatment with either of the two anti-bipolar drugs carbamazepine or valproic acid. The third ‘classical’ anti-bipolar drug, ‘lithium’ increases astrocytic pHi by a different mechanism (stimulation of the acid extruding Na+/H+ exchanger NHE1). The acid extruder fluxes, which depend upon the change in pHi per time unit (ΔpHi/Δt) and intracellular buffering power, have not been established in most of these situations. Therefore their stimulatory effects on energy metabolism has not been quantitated. This has been done in the present study in cultured mouse astrocytes. pHi was determined using the fluorescent pH-sensitive indicator BCECF–AM and an Olympus IX71 live cell imaging fluorescence microscope. Molar acid extrusion fluxes (indicating transporter activity) were determined as pHi changes/min during recovery after acid-loading with NH3/NH4 +, NBCe1 mRNA and protein expression in the cultured cells by, respectively RT-PCR and Western blotting. Drug-induced up-regulation of acid extrusion flux was slow and less than physiologically seen after increase in K+ concentration. Energetically, K+ uptake is much costlier than NBCe1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song D, Du T, Li B, Cai L, Gu L, Li H, Chen Y, Hertz L, Peng L (2008) Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology 200:187–195

    Article  PubMed  CAS  Google Scholar 

  2. Song D, Li B, Yan E, Man Y, Wolfson M, Chen Y, Peng L (2012) Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochem Res 37:2524–2540

    Article  PubMed  CAS  Google Scholar 

  3. Lothman E, Lamanna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88:15–36

    Article  PubMed  CAS  Google Scholar 

  4. Krnjević K, Morris ME (1974) Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats. Can J Physiol Pharmacol 52:852–871

    Article  PubMed  Google Scholar 

  5. Brookes N, Turner RJ (1994) K+-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na+–HCO3 cotransport. Am J Physiol 267:C1633–C1640

    PubMed  CAS  Google Scholar 

  6. Chesler M, Kraig RP (1989) Intracellular pH transients of mammalian astrocytes. J Neurosci 9:2011–2019

    PubMed  CAS  Google Scholar 

  7. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442

    Article  PubMed  CAS  Google Scholar 

  8. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  PubMed  CAS  Google Scholar 

  9. Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  PubMed  CAS  Google Scholar 

  10. Hertz L (1979) Inhibition by barbiturates of an intense net uptake of potassium into astrocytes. Neuropharmacology 18:629–632

    Article  PubMed  CAS  Google Scholar 

  11. Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39:70–77

    Article  PubMed  CAS  Google Scholar 

  12. Peng L, Juurlink BH, Hertz L (1996) Pharmacological and developmental evidence that the potassium-induced stimulation of deoxyglucose uptake in astrocytes is a metabolic manifestation of increased Na(+)–K(+)-ATPase activity. Dev Neurosci 18(5–6):353–359

    Article  PubMed  CAS  Google Scholar 

  13. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    Article  PubMed  CAS  Google Scholar 

  14. Majumdar D, Maunsbach AB, Shacka JJ, Williams JB, Berger UV, Schultz KP, Harkins LE, Boron WF, Roth KA, Bevensee MO (2008) Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 155:818–832

    Article  PubMed  CAS  Google Scholar 

  15. Ruminot I, Gutiérrez R, Peña-Münzenmayer G, Añazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271

    Article  PubMed  CAS  Google Scholar 

  16. Walz W, Shargool M, Hertz L (1984) Barium-induced inhibition of K+ transport mechanisms in cortical astrocytes–its possible contribution to the large Ba2+-evoked extracellular K+ signal in brain. Neuroscience 13:945–949

    Article  PubMed  CAS  Google Scholar 

  17. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  18. Hertz L (2012) Isotope-based quantitation of uptake, release, and metabolism of glutamate and glucose in cultured astrocytes. Methods Mol Biol 814:305–323

    Article  PubMed  CAS  Google Scholar 

  19. Li B, Zhang S, Li M, Zhang H, Hertz L, Peng L (2009) Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons. Neuropharmacology 57:375–385

    Article  PubMed  CAS  Google Scholar 

  20. Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  21. Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95:189–196

    Article  PubMed  CAS  Google Scholar 

  22. Grant RL, Acosta D (1997) Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In Vitro Cell Dev Biol Anim 33:256–260

    Article  PubMed  CAS  Google Scholar 

  23. Manning TJ Jr, Sontheimer H (1999) Recording of intracellular Ca2+, Cl, pH and membrane potential in cultured astrocytes using a fluorescence plate reader. J Neurosci Methods 91:73–81

    Article  PubMed  CAS  Google Scholar 

  24. Henderson PJ, McGivan JD, Chappell JB (1969) The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J 111:521–535

    PubMed  CAS  Google Scholar 

  25. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  26. McAlear SD, Bevensee MO (2004) pH Regulation in non-neuronal brain cells and interstitial fluid. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 707–745

    Google Scholar 

  27. Boron WF, De Weer P (1976) Active proton transport stimulated by CO2/HCO3 , blocked by cyanide. Nature 259:240–241

    Article  PubMed  CAS  Google Scholar 

  28. Bevensee MO, Apkon M, Boron WF (1997) Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport. J Gen Physiol 110:467–483

    Article  PubMed  CAS  Google Scholar 

  29. Kintner DB, Look A, Shull GE, Sun D (2005) Stimulation of astrocyte Na+/H+ exchange activity in response to in vitro ischemia depends in part on activation of ERK1/2. Am J Physiol Cell Physiol 289:C934–C945

    Article  PubMed  CAS  Google Scholar 

  30. McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM (2000) Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 278:C676–C688

    PubMed  CAS  Google Scholar 

  31. Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD (1992) Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol 458:361–384

    PubMed  CAS  Google Scholar 

  32. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  33. Nejsum LN, Praetorius J, Nielsen S (2005) NKCC1 and NHE1 are abundantly expressed in the basolateral plasma membrane of secretory coil cells in rat, mouse, and human sweat glands. Am J Physiol Cell Physiol 289:C333–C340

    Article  PubMed  CAS  Google Scholar 

  34. El Marjou M, Montalescot V, Buzyn A, Geny B (2000) Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 14:2118–2127

    Article  PubMed  Google Scholar 

  35. Li B, Hertz L, Peng L (2012) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61:1325–1332

    Article  PubMed  CAS  Google Scholar 

  36. Peng L, Martin-Vasallo P, Sweadner KJ (1997) Isoforms of Na, K-ATPase α and β subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17:3488–3502

    PubMed  CAS  Google Scholar 

  37. Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70(Suppl):S367–S373

    Article  PubMed  CAS  Google Scholar 

  38. Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5:e1000272

    Article  PubMed  Google Scholar 

  39. Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS One 7:e51124

    Article  PubMed  CAS  Google Scholar 

  40. Thomas RC (1972) Electrogenic sodium pump in nerve and muscle cells. Physiol Rev 52:563–594

    PubMed  CAS  Google Scholar 

  41. Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58:82–88

    Article  PubMed  CAS  Google Scholar 

  42. Vadnal RE, Bazan NG (1988) Carbamazepine inhibits electroconvulsive shock-induced inositol trisphosphate (IP3) accumulation in rat cerebral cortex and hippocampus. Biochem Biophys Res Commun 153:128–134

    Article  PubMed  CAS  Google Scholar 

  43. Wu J, McNicholas CM, Bevensee MO (2009) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 106:14150–14155

    Article  PubMed  CAS  Google Scholar 

  44. Thornell IM, Wu J, Liu X, Bevensee MO (2012) PIP2 hydrolysis stimulates the electrogenic Na+-bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus laevis oocytes. J Physiol 590:5993–6011

    Article  PubMed  CAS  Google Scholar 

  45. Haque SK, Ariceta G, Batlle D (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27:4273–4287

    Article  PubMed  CAS  Google Scholar 

  46. Lee HJ, Park HJ, Lee S, Kim YH, Choi I (2011) The sodium-driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res 1377:13–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 31171036 from the National Natural Science Foundation of China.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Dan Song and Yi Man have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Man, Y., Li, B. et al. Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH +) and in energy consumption rates in astrocytes. Neurochem Res 38, 2364–2374 (2013). https://doi.org/10.1007/s11064-013-1149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1149-2

Keywords

Navigation