Skip to main content

Advertisement

Log in

The Fruits of Maclura pomifera Extracts Inhibits Glioma Stem-Like Cell Growth and Invasion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glioma is the most common primary intracranial tumour. Recently, growing evidence showed that glioma possesses stem-like cells, which are thought to be chemo- and radio-resistant and believed to contribute to the poor clinical outcomes of these tumours. In this study, we found that stem-like glioma cells (CD133+) were significantly increased in neurosphere cells, which are highly invasive and resistant to multiple chemotherapeutic agents. From our natural products library, we screened 48 natural products and found one compound, Pomiferin, which was of particular interest. Our results showed that Pomiferin could inhibit cell viability, CD133+ cell population, sphere formation, and invasion ability of glioma neurosphere cells. We also found that multiple stemness-associated genes (BIM1, Nestin, and Nanog) were down-regulated by Pomiferin treatment of glioma neurosphere cells. Taken together, our results suggest that Pomiferin could kill the cancer stem-like cells in glioma and may serve as a potential therapeutic agent in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis FG, McCarthy BJ (2001) Current epidemiological trends and surveillance issues in brain tumors. Expert Rev Anticancer Ther 1:395–401

    Article  PubMed  CAS  Google Scholar 

  2. Benedetti S, Pirola B, Pollo B et al (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6:447–450

    Article  PubMed  CAS  Google Scholar 

  3. Xia H, Qi Y, Ng SS et al (2009) MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380:205–210

    Article  PubMed  CAS  Google Scholar 

  4. Eby NL, Grufferman S, Flannelly CM et al (1988) Increasing incidence of primary brain lymphoma in the US. Cancer 62:2461–2465

    Article  PubMed  CAS  Google Scholar 

  5. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  6. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  7. Dontu G, Abdallah WM, Foley JM et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  8. Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98:1755–1757

    Article  PubMed  Google Scholar 

  9. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  10. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  PubMed  CAS  Google Scholar 

  11. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  12. Zobalova R, Stantic M, Stapelberg M et al. (2011) Drugs that kill cancer stem-like cells. Cancer stem cells theories and practice. InTech, pp. 361–378

  13. Burnett J, Newman B, Sun D (2012) Targeting cancer stem cells with natural products. Curr Drug Targets 13:1054–1064

    Article  PubMed  CAS  Google Scholar 

  14. Yang R, Hanwell H, Zhang J et al (2011) Antiproliferative activity of Pomiferin in normal (MCF-10A) and transformed (MCF-7) breast epithelial cells. J Agric Food Chem 59:13328–13336

    Article  PubMed  CAS  Google Scholar 

  15. Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29:8884–8896

    Article  PubMed  CAS  Google Scholar 

  16. Hart AH, Hartley L, Parker K et al (2005) The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 104:2092–2098

    Article  PubMed  CAS  Google Scholar 

  17. Wagner N, Wagner KD, Scholz H et al (2006) Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms’ tumor suppressor Wt1. Am J Physiol Regul Integr Comp Physiol 291:R779–R787

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  20. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  21. Fan X, Khaki L, Zhu TS et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16

    PubMed  CAS  Google Scholar 

  22. Bar EE, Chaudhry A, Lin A et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    Article  PubMed  CAS  Google Scholar 

  23. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  24. Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  PubMed  CAS  Google Scholar 

  25. Laks DR, Masterman-Smith M, Visnyei K et al (2009) Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27:980–987

    Article  PubMed  Google Scholar 

  26. Strojnik T, Røsland GV, Sakariassen PO et al (2007) Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol 68:133–143

    Article  PubMed  Google Scholar 

  27. Zbinden M, Duquet A, Lorente-Trigos A et al (2010) NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 29:2659–2674

    Article  PubMed  CAS  Google Scholar 

  28. Son IH, Chung I-M, Lee SI et al (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Natural Science Foundation of China; Grant Number: 81201994.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Chen or Hongping Xia.

Additional information

Dan Zhao and Chengyun Yao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Yao, C., Chen, X. et al. The Fruits of Maclura pomifera Extracts Inhibits Glioma Stem-Like Cell Growth and Invasion. Neurochem Res 38, 2105–2113 (2013). https://doi.org/10.1007/s11064-013-1119-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1119-8

Keywords

Navigation