Skip to main content

Advertisement

Log in

Handling of Iron Oxide and Silver Nanoparticles by Astrocytes

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nano 4:634–641

    Article  CAS  Google Scholar 

  2. Chakraborty M, Jain S, Rani V (2011) Nanotechnology: emerging tool for diagnostics and therapeutics. Appl Biochem Biotechnol 165:1178–1187

    Article  PubMed  CAS  Google Scholar 

  3. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  PubMed  CAS  Google Scholar 

  4. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine (Lond) 6:570–574

    CAS  Google Scholar 

  5. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

    Article  PubMed  CAS  Google Scholar 

  6. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  PubMed  CAS  Google Scholar 

  7. Mangematin V, Walsh S (2012) The future of nanotechnologies. Technovation 32:157–160

    Article  Google Scholar 

  8. Sharpe M (2006) Small wonders, big future: the development of environmental nanotechnology. J Environ Monit 8:235–239

    Article  PubMed  CAS  Google Scholar 

  9. Invernizzi N (2011) Nanotechnology between the lab and the shop floor: what are the effects on labor? J Nanopart Res 13:2249–2268

    Article  Google Scholar 

  10. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 20:575–583

    Article  PubMed  CAS  Google Scholar 

  11. Tang J, Xiong L, Zhou G, Wang S, Wang J, Liu L, Li J, Yuan F, Lu S, Wan Z, Chou L, Xi T (2010) Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol 10:6313–6317

    Article  PubMed  CAS  Google Scholar 

  12. Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed 5:861–866

    CAS  Google Scholar 

  13. van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442

    Article  PubMed  CAS  Google Scholar 

  14. Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A (2010) Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364

    Article  PubMed  Google Scholar 

  15. Sharma HS, Patnaik R, Sharma A (2010) Diabetes aggravates nanoparticles induced breakdown of the blood-brain barrier permeability, brain edema formation, alterations in cerebral blood flow and neuronal injury. An experimental study using physiological and morphological investigations in the rat. J Nanosci Nanotechnol 10:7931–7945

    Article  PubMed  CAS  Google Scholar 

  16. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118:160–170

    Article  PubMed  CAS  Google Scholar 

  17. Kao YY, Cheng TJ, Yang DM, Wang CT, Chiung YM, Liu PS (2012) Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 48:464–471

    Article  PubMed  CAS  Google Scholar 

  18. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6

    Article  PubMed  Google Scholar 

  19. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  CAS  Google Scholar 

  20. Aschner M (2009) Nanoparticles: transport across the olfactory epithelium and application to the assessment of brain function in health and disease. Prog Brain Res 180:141–152

    Article  PubMed  CAS  Google Scholar 

  21. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  22. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  23. Jones CE (2012) The emerging role of astrocytes in the metal homeostasis in brain. Global J Inorg Chem 3:4

    Google Scholar 

  24. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  PubMed  CAS  Google Scholar 

  25. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    Article  PubMed  CAS  Google Scholar 

  26. Tiffany-Castiglioni E, Hong S, Qian Y (2011) Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci 29:811–818

    Article  PubMed  CAS  Google Scholar 

  27. Scheiber IF, Dringen R (2012) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int (in press)

  28. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  PubMed  CAS  Google Scholar 

  29. Scheiber IF, Schmidt MM, Dringen R (2012) Copper export from cultured astrocytes. Neurochem Int 60:292–300

    Article  PubMed  CAS  Google Scholar 

  30. Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890

    Article  PubMed  CAS  Google Scholar 

  31. Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    Article  CAS  Google Scholar 

  32. Focke A, Schwarz S, Foerschler A, Scheibe J, Milosevic J, Zimmer C, Schwarz J (2008) Labeling of human neural precursor cells using ferromagnetic nanoparticles. Magn Reson Med 60:1321–1328

    Article  PubMed  CAS  Google Scholar 

  33. Lepore AC, Walczak P, Rao MS, Fischer I, Bulte JW (2006) MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol 201:49–59

    Article  PubMed  CAS  Google Scholar 

  34. Walton RM, Magnitsky SG, Seiler GS, Poptani H, Wolfe JH (2008) Transplantation and magnetic resonance imaging of canine neural progenitor cell grafts in the postnatal dog brain. J Neuropathol Exp Neurol 67:954–962

    Article  PubMed  Google Scholar 

  35. Gramowski A, Flossdorf J, Bhattacharya K, Jonas L, Lantow M, Rahman Q, Schiffmann D, Weiss DG, Dopp E (2010) Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect 118:1363–1369

    Article  PubMed  CAS  Google Scholar 

  36. Rivet CJ, Yuan Y, Borca-Tasciuc DA, Gilbert RJ (2012) Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 25:153–161

    Article  PubMed  CAS  Google Scholar 

  37. Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G (2012) Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci 13:32

    Article  PubMed  CAS  Google Scholar 

  38. Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C (2001) Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3:489–499

    Article  PubMed  CAS  Google Scholar 

  39. Pickard M, Chari D (2010) Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by ‘magnetofection’: effects of static and oscillating fields. Nanomedicine (Lond) 5:217–232

    Article  CAS  Google Scholar 

  40. Craparo EF, Bondi ML, Pitarresi G, Cavallaro G (2011) Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 17:670–677

    Article  PubMed  CAS  Google Scholar 

  41. Mahmoudi M, Stroeve P, Milani AS, Arbab AS (2011) Superparamagnetic iron oxide nanoparticles: synthesis, surface engineering, cytotoxicity and biomedical applications. Nova Science Publishers Inc, New York

    Google Scholar 

  42. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  PubMed  CAS  Google Scholar 

  43. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci 368:1333–1383

    Article  CAS  Google Scholar 

  44. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–2735

    Article  PubMed  CAS  Google Scholar 

  45. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  PubMed  CAS  Google Scholar 

  46. Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut 159:677–684

    Article  PubMed  CAS  Google Scholar 

  47. Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142

    Article  PubMed  CAS  Google Scholar 

  48. Teow Y, Asharani PV, Hande MP, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun (Camb) 47:7025–7038

    Article  CAS  Google Scholar 

  49. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  PubMed  CAS  Google Scholar 

  50. Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170

    Article  PubMed  CAS  Google Scholar 

  51. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  PubMed  CAS  Google Scholar 

  52. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Article  PubMed  CAS  Google Scholar 

  53. Fisichella M, Dabboue H, Bhattacharyya S, Saboungi ML, Salvetat JP, Hevor T, Guerin M (2009) Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol In Vitro 23:697–703

    Article  PubMed  CAS  Google Scholar 

  54. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  PubMed  CAS  Google Scholar 

  55. Akhtar MJ, Ahamed M, Kumar MM, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857

    PubMed  CAS  Google Scholar 

  56. Kao YY, Cheng TJ, Yang DM, Wang CT, Chiung YM, Liu PS (2012) Demonstration of an olfactory bulb-brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 48:464–471

    Article  PubMed  CAS  Google Scholar 

  57. Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, Zhou M, Liu C, Wang H, Hong F (2010) Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31:8043–8050

    Article  PubMed  CAS  Google Scholar 

  58. Ku S, Yan F, Wang Y, Sun Y, Yang N, Ye L (2010) The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem Biophys Res Commun 394:871–876

    Article  PubMed  CAS  Google Scholar 

  59. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  PubMed  CAS  Google Scholar 

  60. Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  PubMed  CAS  Google Scholar 

  61. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433

    Article  PubMed  CAS  Google Scholar 

  62. Valois CRA, Braz JM, Nunes ES, Vinolo MAR, Lima ECD, Curi R, Kuebler WM, Azevedo RB (2010) The effect of DMSA-functionalized magnetic nanoparticles on transendothelial migration of monocytes in the murine lung via a β2 integrin-dependent pathway. Biomaterials 31:366–374

    Article  PubMed  CAS  Google Scholar 

  63. Soenen SJ, De Cuyper M (2010) Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine (Lond) 5:1261–1275

    Article  CAS  Google Scholar 

  64. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  65. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32:9353–9363

    Article  PubMed  CAS  Google Scholar 

  66. Chen ZP, Zhang Y, Xu K, Xu RZ, Liu JW, Gu N (2008) Stability of hydrophilic magnetic nanoparticles under biologically relevant conditions. J Nanosci Nanotechnol 8:6260–6265

    Article  PubMed  CAS  Google Scholar 

  67. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Article  PubMed  CAS  Google Scholar 

  68. Winer JL, Kim PE, Law M, Liu CY, Apuzzo ML (2011) Visualizing the future: enhancing neuroimaging with nanotechnology. World Neurosurg 75:626–637

    Article  PubMed  Google Scholar 

  69. Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA (2005) Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. Therapy 2:871–882

    Article  CAS  Google Scholar 

  70. Cromer Berman SM, Walczak P, Bulte JWM (2011) Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:343–355

    Article  PubMed  CAS  Google Scholar 

  71. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496

    Article  PubMed  CAS  Google Scholar 

  72. Kempe H, Kates SA, Kempe M (2011) Nanomedicine’s promising therapy: magnetic drug targeting. Expert Rev Med Devices 8:291–294

    Article  PubMed  Google Scholar 

  73. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Article  PubMed  CAS  Google Scholar 

  74. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  PubMed  Google Scholar 

  75. Thiesen B, Jordan A (2008) Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24:467–474

    Article  PubMed  CAS  Google Scholar 

  76. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–647

    Article  PubMed  CAS  Google Scholar 

  77. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006

    Article  PubMed  CAS  Google Scholar 

  78. Backman U, Jokiniemi JK, Auvinen A, Lehtinen KEJ (2002) The effect of boundary conditions on gas-phase synthesised silver nanoparticles. J Nanopart Res 4:325–335

    Article  CAS  Google Scholar 

  79. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 19:857–871

    Article  PubMed  CAS  Google Scholar 

  80. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koeller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    Article  PubMed  CAS  Google Scholar 

  81. Kang K, Lim DH, Choi IH, Kang T, Lee K, Moon EY, Yang Y, Lee MS, Lim JS (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 205:227–234

    Article  PubMed  CAS  Google Scholar 

  82. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22:375101

    Article  PubMed  CAS  Google Scholar 

  83. Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Koeller M, Epple M (2010) The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20:512–518

    Article  CAS  Google Scholar 

  84. Luther EM, Schmidt MM, Diendorf J, Epple M, Dringen R (2012) Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochem Res 37:1639–1648

    PubMed  CAS  Google Scholar 

  85. Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2

    Article  PubMed  CAS  Google Scholar 

  86. Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65

    Article  PubMed  CAS  Google Scholar 

  87. Graf P, Mantion A, Foelske A, Shkilnyy A, Masic A, Thunemann AF, Taubert A (2009) Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry 15:5831–5844

    Article  PubMed  CAS  Google Scholar 

  88. Haase A, Mantion A, Graf P, Plendl J, Thuenemann AF, Meier W, Taubert A, Luch A (2012) A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems. Arch Toxicol 86:1089–1098

    Article  PubMed  CAS  Google Scholar 

  89. Gopal A, Coventry J, Wan J, Roginski H, Ajlouni S (2010) Alternative disinfection techniques to extend the shelf life of minimally processed iceberg lettuce. Food Microbiology 27:210–219

    Article  PubMed  CAS  Google Scholar 

  90. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  PubMed  CAS  Google Scholar 

  91. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  92. Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  PubMed  CAS  Google Scholar 

  93. Oei JD, Zhao WW, Chu L, Desilva MN, Ghimire A, Rawls HR, Whang K (2012) Antimicrobial acrylic materials with in situ generated silver nanoparticles. J Biomed Mater Res B 100B:409–415

    Article  CAS  Google Scholar 

  94. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208:286–292

    Article  PubMed  CAS  Google Scholar 

  95. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  PubMed  CAS  Google Scholar 

  96. Kittler S, Greulich C, Köller M, Epple M (2009) Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. Materialwiss Werkstofftech 40:258–264

    Article  CAS  Google Scholar 

  97. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  PubMed  CAS  Google Scholar 

  98. Locht LJ, Smidt K, Rungby J, Stoltenberg M, Larsen A (2011) Uptake of silver from metallic silver surfaces induces cell death and a pro-inflammatory response in cultured J774 macrophages. Histol Histopathol 26:689–697

    PubMed  CAS  Google Scholar 

  99. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432

    Article  PubMed  CAS  Google Scholar 

  100. Mukherjee SG, O’Claonadh N, Casey A, Chambers G (2012) Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol In Vitro 26:238–251

    Article  PubMed  CAS  Google Scholar 

  101. Panyala N, Pena-Mendez E, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  102. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100

    Article  PubMed  CAS  Google Scholar 

  103. Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7(Suppl 4):S411–422

    Article  PubMed  CAS  Google Scholar 

  104. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  PubMed  CAS  Google Scholar 

  105. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932

    Article  PubMed  CAS  Google Scholar 

  106. Yang H (2010) Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 27:1759–1771

    Article  PubMed  CAS  Google Scholar 

  107. Lamkowsky MC, Geppert M, Schmidt MM, Dringen R (2012) Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J Biomed Mater Res A 100A:323–334

    Article  CAS  Google Scholar 

  108. Geppert M, Hohnholt MC, Nürnberger S, Dringen R (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8:3832–3839

    Article  PubMed  CAS  Google Scholar 

  109. Yiu HH, Pickard MR, Olariu CI, Williams SR, Chari DM, Rosseinsky MJ (2012) Fe3O4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res 29:1328–1343

    Article  PubMed  CAS  Google Scholar 

  110. Pickard MR, Jenkins SI, Koller CJ, Furness DN, Chari DM (2011) Magnetic nanoparticle labeling of astrocytes derived for neural transplantation. Tissue Eng C Methods 17:89–99

    Article  CAS  Google Scholar 

  111. Geppert M, Hohnholt M, Gaetjen L, Grunwald I, Bäumer M, Dringen R (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293

    Article  PubMed  CAS  Google Scholar 

  112. Hohnholt M, Geppert M, Dringen R (2010) Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res 35:1259–1268

    Article  PubMed  CAS  Google Scholar 

  113. Geppert M, Hohnholt MC, Thiel K, Nurnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    Article  PubMed  CAS  Google Scholar 

  114. Clift MJ, Bhattacharjee S, Brown DM, Stone V (2010) The effects of serum on the toxicity of manufactured nanoparticles. Toxicol Lett 198:358–365

    Article  PubMed  CAS  Google Scholar 

  115. Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88:563–571

    PubMed  CAS  Google Scholar 

  116. Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68:129–137

    Article  PubMed  CAS  Google Scholar 

  117. Guarnieri D, Guaccio A, Fusco S, Netti P (2011) Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. J Nanopart Res 13:4295–4309

    Article  CAS  Google Scholar 

  118. Tedja R, Lim M, Amal R, Marquis C (2012) Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6:4083–4093

    Article  PubMed  CAS  Google Scholar 

  119. Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20:256–275

    Article  PubMed  CAS  Google Scholar 

  120. Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403

    Article  PubMed  CAS  Google Scholar 

  121. Sandvig K, Pust S, Skotland T, van Deurs B (2011) Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 23:413–420

    Article  PubMed  CAS  Google Scholar 

  122. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    Article  PubMed  CAS  Google Scholar 

  123. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185

    Article  CAS  Google Scholar 

  124. Wiogo HT, Lim M, Bulmus V, Yun J, Amal R (2011) Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir 27:843–850

    Article  PubMed  CAS  Google Scholar 

  125. Jansch M, Stumpf P, Graf C, Rühl E, Müller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428:125–133

    Article  PubMed  CAS  Google Scholar 

  126. Voinov MA, Sosa Pagan JO, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41

    Article  PubMed  CAS  Google Scholar 

  127. Levy M, Lagarde F, Maraloiu VA, Blanchin MG, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21:395103

    Article  PubMed  CAS  Google Scholar 

  128. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  PubMed  CAS  Google Scholar 

  129. Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    Article  PubMed  CAS  Google Scholar 

  130. van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Bruck W, von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    Article  PubMed  CAS  Google Scholar 

  131. Kurz T, Terman A, Gustafsson B, Brunk U (2008) Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol 129:389–406

    Article  PubMed  CAS  Google Scholar 

  132. Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66:1198–1207

    Article  PubMed  CAS  Google Scholar 

  133. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7:3946–3954

    Article  PubMed  CAS  Google Scholar 

  134. Garrick MD, Garrick LM (2009) Cellular iron transport. Biochim Biophys Acta 1790:309–325

    Article  PubMed  CAS  Google Scholar 

  135. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 1001:108–117

    Article  PubMed  CAS  Google Scholar 

  136. Haase A, Rott S, Mantion A, Graf P, Plendl J, Thunemann AF, Meier WP, Taubert A, Luch A, Reiser G (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–468

    Article  PubMed  CAS  Google Scholar 

  137. Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    Article  PubMed  CAS  Google Scholar 

  138. Park JS, Jung JS, Jeong YH, Hyun JW, Le TK, Kim DH, Choi EC, Kim HS (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J Neurochem 119:909–919

    Article  PubMed  CAS  Google Scholar 

  139. Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155:623–640

    Article  PubMed  CAS  Google Scholar 

  140. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M (2008) Metallothionein in the central nervous system: roles in protection, regeneration and cognition. Neurotoxicology 29:489–503

    Article  PubMed  CAS  Google Scholar 

  141. Nunes A, Al-Jamal KT, Kostarelos K (2012) Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release 161:290–306

    Article  PubMed  CAS  Google Scholar 

  142. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862

    Article  PubMed  CAS  Google Scholar 

  143. Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, von Rechenberg B, Hottiger MO (2006) Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 34:e40

    Article  PubMed  CAS  Google Scholar 

  144. Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M (2007) Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 120:248–256

    Article  PubMed  CAS  Google Scholar 

  145. Ding J, Tao K, Li J, Song S, Sun K (2010) Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids Surf B Biointerfaces 79:184–190

    Article  PubMed  CAS  Google Scholar 

  146. Selva J, Martinez SE, Buceta D, Rodriguez-Vazquez MJ, Blanco MC, Lopez-Quintela MA, Egea G (2010) Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells. J Am Chem Soc 132:6947–6954

    Article  PubMed  CAS  Google Scholar 

  147. Bastian S, Busch W, Kuhnel D, Springer A, Meissner T, Holke R, Scholz S, Iwe M, Pompe W, Gelinsky M, Potthoff A, Richter V, Ikonomidou C, Schirmer K (2009) Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ Health Perspect 117:530–536

    Article  PubMed  CAS  Google Scholar 

  148. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P (2009) Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30:702–711

    Article  PubMed  CAS  Google Scholar 

  149. Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS (2008) Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 29:4546–4553

    Article  PubMed  CAS  Google Scholar 

  150. Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, Monsonego A, Bar-Shir A, Engel Y, Gozin M, Weiner HL (2008) Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest 118:1532–1543

    Article  PubMed  CAS  Google Scholar 

  151. Tsutsui Y, Tomizawa K, Nagita M, Michiue H, Nishiki T, Ohmori I, Seno M, Matsui H (2007) Development of bionanocapsules targeting brain tumors. J Control Release 122:159–164

    Article  PubMed  CAS  Google Scholar 

  152. Kim JB, Choi JS, Nam K, Lee M, Park JS, Lee JK (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Control Release 114:110–117

    Article  PubMed  CAS  Google Scholar 

  153. Pignatello R, Acquaviva R, Campisi A, Raciti G, Musumeci T, Puglisi G (2011) Effects of liposomal encapsulation on the antioxidant activity of lipophilic prodrugs of idebenone. J Liposome Res 21:46–54

    Article  PubMed  CAS  Google Scholar 

  154. Montenegro L, Campisi A, Sarpietro MG, Carbone C, Acquaviva R, Raciti G, Puglisi G (2011) In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev Ind Pharm 37:737–746

    Article  PubMed  CAS  Google Scholar 

  155. Chang J, Paillard A, Passirani C, Morille M, Benoit JP, Betbeder D, Garcion E (2012) Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res 29:1495–1505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. C. Hohnholt would like to thank the “Forschungsförderung” of the University of Bremen for financial support. M. Geppert and E. M. Luther would like to thank the Hans-Böckler-Stiftung for their Ph.D. fellowships. M. C. Hohnholt, M. Geppert and E. M. Luther were members of the graduate school “nanoToxCom”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohnholt, M.C., Geppert, M., Luther, E.M. et al. Handling of Iron Oxide and Silver Nanoparticles by Astrocytes. Neurochem Res 38, 227–239 (2013). https://doi.org/10.1007/s11064-012-0930-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0930-y

Keywords

Navigation