Skip to main content
Log in

Cooperation of Non-Effective Concentration of Glutamatergic System Modulators and Antioxidant Against Oxidative Stress Induced by Quinolinic Acid

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excessive formation of reactive oxygen species (ROS) and disruption of glutamate uptake have been hypothesized as key mechanisms contributing to quinolinic acid (QA)-induced toxicity. Thus, here we investigate if the use of diphenyl diselenide (PhSe)2, guanosine (GUO) and MK-801, alone or in combination, could protect rat brain slices from QA-induced toxicity. QA (1 mM) increased ROS formation, thiobarbituric acid reactive substances (TBARS) and decreased cell viability after 2 h of exposure. (PhSe)2 (1 μM) protected against this ROS formation in the cortex and the striatum and also prevented decreases in cell viability induced by QA. (PhSe)2 (5 μM) prevented ROS formation in the hippocampus. GUO (10 and 100 μM) blocked the increase in ROS formation caused by QA and MK-801 (20 and 100 μM) abolished the pro-oxidant effect of QA. When the noneffective concentrations were used in combination produced a decrease in ROS formation, mainly (PhSe)2 + GUO and (PhSe)2 + GUO + MK-801. These results demonstrate that this combination could be effective to avoid toxic effects caused by high concentrations of QA. Furthermore, the data obtained in the ROS formation and cellular viability assays suggest different pathways in amelioration of QA toxicity present in the neurodegenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695. doi:10.1126/science.7901908

    Article  PubMed  CAS  Google Scholar 

  2. Schuck PF, Tonin A, da Costa Ferreira G, Rosa RB, Latini A, Balestro F, Perry ML, Wannmacher CM, de Souza Wyse AT, Wajner M (2007) In vitro effect of quinolinic acid on energy metabolism in brain of young rats. Neurosci Res 57(2):277–288. doi:10.1016/j.neures.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  3. Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19(1):275–281. doi:10.1007/s007260070059

    Article  PubMed  CAS  Google Scholar 

  4. Vega-Naredo I, Poeggeler B, Sierra-Sanchez V, Caballero B, Tomas-Zapico C, Alvarez-Garcia O, Tolivia D, Rodriguez-Colunga MJ, Coto-Montes A (2005) Melatonin neutralizes neurotoxicity induced by quinolinic acid in brain tissue culture. J Pineal Res 39(3):266–275. doi:10.1111/j.1600-079X.2005.00243.x

    Article  PubMed  CAS  Google Scholar 

  5. Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharmacol Exp Ther 226(2):551–557

    PubMed  CAS  Google Scholar 

  6. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627. doi:10.1016/S0197-0186(01)00133-4

    Article  PubMed  CAS  Google Scholar 

  7. Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport 11(2):249–253. doi:10.1097/00001756-200002070-00005

    Article  PubMed  CAS  Google Scholar 

  8. Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86. doi:10.1007/s12640-009-9051-z

    Article  PubMed  CAS  Google Scholar 

  9. Finkbeiner S, Cuervo AM, Morimoto RI, Muchowski PJ (2006) Disease-modifying pathways in neurodegeneration. J Neurosci 26(41):10349–10357. doi:10.1523/JNEUROSCI.3829-06.2006

    Article  PubMed  CAS  Google Scholar 

  10. Guillemin GJ, Brew BJ (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7(4):199–206. doi:10.1179/135100002125000550

    Article  PubMed  CAS  Google Scholar 

  11. Guillemin GJ, Kerr SJ, Brew BJ (2005) Involvement of quinolinic acid in AIDS dementia complex. Neurotox Res 7(1–2):103–123. doi:10.1007/BF03033781

    Article  PubMed  CAS  Google Scholar 

  12. Frizzo ME, Lara DR, Dahm KC, Prokopiuk AS, Swanson RA, Souza DO (2001) Activation of glutamate uptake by guanosine in primary astrocyte cultures. NeuroReport 12(4):879–881. doi:10.1097/00001756-200103260-00051

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt AP, Avila TT, Souza DO (2005) Intracerebroventricular guanine-based purines protect against seizures induced by quinolinic acid in mice. Neurochem Res 30(1):69–73

    Article  PubMed  CAS  Google Scholar 

  14. Frizzo ME, Antunes Soares FA, Dall’Onder LP, Lara DR, Swanson RA, Souza DO (2003) Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 972(1–2):84–89. doi:10.1016/S0006-8993(03)02506-X

    PubMed  CAS  Google Scholar 

  15. Soares FA, Schmidt AP, Farina M, Frizzo ME, Tavares RG, Portela LV, Lara DR, Souza DO (2004) Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res 1005(1–2):182–186. doi:10.1016/j.brainres.2004.01.053

    Article  PubMed  CAS  Google Scholar 

  16. Kachur AV, Manevich Y, Biaglow JE (1997) Effect of purine nucleoside phosphates on OH-radical generation by reaction of Fe2+ with oxygen. Free Radic Res 26(5):399–408. doi:10.3109/10715769709084476

    Article  PubMed  CAS  Google Scholar 

  17. Saute JA, da Silveira LE, Soares FA, Martini LH, Souza DO, Ganzella M (2006) Amnesic effect of GMP depends on its conversion to guanosine. Neurobiol Learn Mem 85(3):206–212. doi:10.1016/j.nlm.2005.10.006

    Article  PubMed  CAS  Google Scholar 

  18. Biaglow JE, Held KD, Manevich Y, Tuttle S, Kachur A, Uckun F (1996) Role of guanosine triphosphate in ferric ion-linked Fenton chemistry. Radiat Res 145(5):554–562. doi:10.2307/3579273

    Article  PubMed  CAS  Google Scholar 

  19. Gudkov SV, Shtarkman IN, Smirnova VS, Chernikov AV, Bruskov VI (2006) Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat Res 165(5):538–545. doi:10.1667/RR3552.1

    Article  PubMed  CAS  Google Scholar 

  20. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6285. doi:10.1021/cr0406559

    Article  PubMed  CAS  Google Scholar 

  21. Rossato JI, Ketzer LA, Centuriao FB, Silva SJ, Ludtke DS, Zeni G, Braga AL, Rubin MA, Rocha JB (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27(4):297–303. doi:10.1023/A:1014907228580

    Article  PubMed  CAS  Google Scholar 

  22. Maciel EN, Bolzan RC, Braga AL, Rocha JB (2000) Diphenyl diselenide and diphenyl ditelluride differentially affect delta-aminolevulinate dehydratase from liver, kidney, and brain of mice. J Biochem Mol Toxicol 14(6):310–319. doi:10.1002/1099-0461(2000)14:6<310:AID-JBT3>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  23. Nogueira CW, Rotta LN, Perry ML, Souza DO, da Rocha JB (2001) Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res 906(1–2):157–163. doi:10.1016/S0006-8993(01)02165-5

    Article  PubMed  CAS  Google Scholar 

  24. Nogueira CW, Rotta LN, Zeni G, Souza DO, Rocha JB (2002) Exposure to ebselen changes glutamate uptake and release by rat brain synaptosomes. Neurochem Res 27(4):283–288. doi:10.1023/A:1014903127672

    Article  PubMed  CAS  Google Scholar 

  25. Nogueira CW, Meotti FC, Curte E, Pilissao C, Zeni G, Rocha JB (2003) Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 183(1–3):29–37. doi:10.1016/S0300-483X(02)00423-7

    Article  PubMed  CAS  Google Scholar 

  26. Santamaria A, Rios C (1993) MK-801, an N-methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159(1–2):51–54. doi:10.1016/0304-3940(93)90796-N

    Article  PubMed  CAS  Google Scholar 

  27. Bueno A, De Olmos S, Heimer L, De Olmos J (2003) NMDA-antagonist MK-801-induced neuronal degeneration in Wistar rat brain detected by the Amino-Cupric-Silver method. Exp Toxicol Pathol 54(4):319–334. doi:10.1078/0940-2993-00264

    Article  PubMed  CAS  Google Scholar 

  28. Sharp FR, Jasper P, Hall J, Noble L, Sagar SM (1991) MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann Neurol 30(6):801–809. doi:10.1002/ana.410300609

    Article  PubMed  CAS  Google Scholar 

  29. Paulmier C (1986) Selenoorganic functional groups. In: Paulmier C (ed) Selenium reagents and intermediates in organic synthesis, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  30. Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220. doi:10.1016/j.neuroscience.2011.03.022

    Article  PubMed  CAS  Google Scholar 

  31. Molz S, Decker H, Oliveira IJ, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 30(1):83–89

    Article  PubMed  CAS  Google Scholar 

  32. Oliveira IJ, Molz S, Souza DO, Tasca CI (2002) Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia. Cell Mol Neurobiol 22(3):335–344

    Article  PubMed  CAS  Google Scholar 

  33. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27(1–2):146–159. doi:10.1016/S0891-5849(99)00061-1

    Article  PubMed  CAS  Google Scholar 

  34. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. doi:10.1016/0003-2697(79)90738-3

    Article  PubMed  CAS  Google Scholar 

  35. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  37. Brana C, Benham C, Sundstrom L (2002) A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res Brain Res Protoc 10(2):109–114

    Article  PubMed  CAS  Google Scholar 

  38. Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402. doi:10.1016/j.neures.2006.05.003

    Article  PubMed  CAS  Google Scholar 

  39. Lisy V, Stastny F (2002) Nitric oxide synthase inhibition and glutamate binding in quinolinate-lesioned rat hippocampus. Physiol Res 51(3):299–307

    PubMed  CAS  Google Scholar 

  40. Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128(8):1754–1760. doi:10.1038/sj.bjp.0702940

    Article  PubMed  CAS  Google Scholar 

  41. Behan WM, Stone TW (2002) Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists. Br J Pharmacol 135(6):1435–1442. doi:10.1038/sj.bjp.0704613

    Article  PubMed  CAS  Google Scholar 

  42. Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16(10):1139–1143

    Article  PubMed  CAS  Google Scholar 

  43. Perez Velazquez JL, Frantseva MV, Carlen PL (1997) In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J Neurosci 17(23):9085–9094

    PubMed  CAS  Google Scholar 

  44. Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P (1997) Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem 68(5):2038–2045. doi:10.1046/j.1471-4159.1997.68052038.x

    Article  PubMed  CAS  Google Scholar 

  45. Hartley DM, Kurth MC, Bjerkness L, Weiss JH, Choi DW (1993) Glutamate receptor-induced 45Ca2+ accumulation in cortical cell culture correlates with subsequent neuronal degeneration. J Neurosci 13(5):1993–2000

    PubMed  CAS  Google Scholar 

  46. Castilho RF, Kowaltowski AJ, Vercesi AE (1996) The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioeng Biomembr 28(6):523–529. doi:10.1007/BF02110442

    Article  CAS  Google Scholar 

  47. Sousa SC, Maciel EN, Vercesi AE, Castilho RF (2003) Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett 543(1–3):179–183. doi:10.1016/S0014-5793(03)00421-6

    Article  PubMed  CAS  Google Scholar 

  48. Roos DH, Puntel RL, Santos MM, Souza DO, Farina M, Nogueira CW, Aschner M, Burger ME, Barbosa NB, Rocha JB (2009) Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol In Vitro 23(2):302–307. doi:10.1016/j.tiv.2008.12.020

    Article  PubMed  CAS  Google Scholar 

  49. Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J, Galvan-Arzate S, Jimenez-Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86(2):479–488. doi:10.1046/j.1471-4159.2003.01857.x

    Article  PubMed  CAS  Google Scholar 

  50. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33(8):1351–1365. doi:10.1111/j.1460-9568.2011.07628.x

    Article  PubMed  Google Scholar 

  51. Avila DS, Gubert P, Palma A, Colle D, Alves D, Nogueira CW, Rocha JB, Soares FA (2008) An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Res Bull 76(1–2):114–123. doi:10.1016/j.brainresbull.2007.12.008

    Article  PubMed  CAS  Google Scholar 

  52. Perez-De La Cruz V, Gonzalez-Cortes C, Galvan-Arzate S, Medina-Campos ON, Perez-Severiano F, Ali SF, Pedraza-Chaverri J, Santamaria A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135(2):463–474. doi:10.1016/j.neuroscience.2005.06.027

    Article  PubMed  CAS  Google Scholar 

  53. Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257(1–2):221–239. doi:10.1016/j.jns.2007.01.033

    Article  PubMed  CAS  Google Scholar 

  54. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105. doi:10.1016/S0301-0082(00)00067-8

    Article  PubMed  CAS  Google Scholar 

  55. Vinade ER, Schmidt AP, Frizzo ME, Izquierdo I, Elisabetsky E, Souza DO (2003) Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res 977(1):97–102. doi:10.1016/S0006-8993(03)02769-0

    Article  PubMed  Google Scholar 

  56. Lara DR, Schmidt AP, Frizzo ME, Burgos JS, Ramirez G, Souza DO (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912(2):176–180. doi:10.1016/S0006-8993(01)02734-2

    Article  PubMed  CAS  Google Scholar 

  57. Santos TG, Souza DO (1070) Tasca CI (2006) GTP uptake into rat brain synaptic vesicles. Brain Res 1:71–76. doi:10.1016/j.brainres.2005.10.099

    Google Scholar 

  58. Molz S, Tharine DC, Decker H, Tasca CI (2008) GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices. Brain Res 1231:113–120. doi:10.1016/j.brainres.2008.07.009

    Article  PubMed  CAS  Google Scholar 

  59. Ciccarelli R, Di Iorio P, Giuliani P, D’Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25(1):93–98. doi:10.1002/(SICI)1098-1136(19990101)25:1<93:AID-GLIA9>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  60. Ellison G (1994) Competitive and non-competitive NMDA antagonists induce similar limbic degeneration. NeuroReport 5(18):2688–2692. doi:10.1097/00001756-199412000-00070

    Article  PubMed  CAS  Google Scholar 

  61. Price DL (1999) New order from neurological disorders. Nature 399(6738 Suppl):A3–A5

    PubMed  CAS  Google Scholar 

  62. Liddell JR, Hoepken HH, Crack PJ, Robinson SR, Dringen R (2006) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84(3):578–586. doi:10.1002/jnr.20957

    Article  PubMed  CAS  Google Scholar 

  63. Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79(1–2):157–165. doi:10.1002/jnr.20280

    Article  PubMed  CAS  Google Scholar 

  64. Zhao R, Holmgren A (2004) Ebselen is a dehydroascorbate reductase mimic, facilitating the recycling of ascorbate via mammalian thioredoxin systems. Antioxid Redox Signal 6(1):99–104. doi:10.1089/152308604771978390

    Article  PubMed  CAS  Google Scholar 

  65. Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41(2):143–210

    PubMed  CAS  Google Scholar 

  66. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54(5):581–618

    Article  PubMed  CAS  Google Scholar 

  67. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613–622. doi:10.1056/NEJM199403033300907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)” # 01.06.0842-00, INCT for Excitotoxicity and Neuroprotection-MCT/CNPq. J.B.T.R and F.A.A.S. receive a fellowship by CNPq. F.D. and C.L.D.C. receive a fellowship by CAPES. Additional support giving by FAPERGS and CAPES. This work was revised by BioMed Proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Alexandre Antunes Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrachinski, F., Bastos, L.L., Bridi, J.C. et al. Cooperation of Non-Effective Concentration of Glutamatergic System Modulators and Antioxidant Against Oxidative Stress Induced by Quinolinic Acid. Neurochem Res 37, 1993–2003 (2012). https://doi.org/10.1007/s11064-012-0820-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0820-3

Keywords

Navigation